Fast and wideband Identification of Systems: Fast and wideband Identification of Systems: broadband excitation and the processing of responses (Impedance.

Slides:



Advertisements
Similar presentations
Islamic university of Gaza Faculty of engineering Electrical engineering dept. Submitted to: Dr.Hatem Alaidy Submitted by: Ola Hajjaj Tahleel.
Advertisements

Signals and Fourier Theory
Pulse Techniques. Off-Resonance Effects Initial magnetization along z x-pulse (  = 0) On-resonance: M z -> -M y Off-resonance: phase 
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 181 Lecture 18 DSP-Based Analog Circuit Testing  Definitions  Unit Test Period (UTP)  Correlation.
ECE 4371, Fall, 2014 Introduction to Telecommunication Engineering/Telecommunication Laboratory Zhu Han Department of Electrical and Computer Engineering.
Inverse problem of EIT using spectral constraints Emma Malone 1, Gustavo Santos 1, David Holder 1, Simon Arridge 2 1 Department of Medical Physics and.
Introduction and Overview Dr Mohamed A. El-Gebeily Department of Mathematical Sciences KFUPM
Theoretical basis for data communication
Chi-Cheng Lin, Winona State University CS412 Introduction to Computer Networking & Telecommunication Theoretical Basis of Data Communication.
Intro to Spectral Analysis and Matlab. Time domain Seismogram - particle position over time Time Amplitude.
Lecture 9: D/A and A/D Converters
1 Peak-to-Average Power Ratio (PAPR) One of the main problems in OFDM system is large PAPR /PAR(increased complexity of the ADC and DAC, and reduced efficiency.
A scalable DAQ system using the DRS4 sampling chip H.Friederich 1, G.Davatz 1, U.Hartmann 2, A.Howard 1, H.Meyer 1, D.Murer 1, S.Ritt 2, N.Schlumpf 2 1.
Novocontrol Alpha Analyzers Fundamentals
Outline Transmitters (Chapters 3 and 4, Source Coding and Modulation) (week 1 and 2) Receivers (Chapter 5) (week 3 and 4) Received Signal Synchronization.
ECE 501 Introduction to BME
An Introduction to S-Transform for Time-Frequency Analysis S.K. Steve Chang SKC-2009.
Computer Graphics Recitation 6. 2 Motivation – Image compression What linear combination of 8x8 basis signals produces an 8x8 block in the image?
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems Spring 2005 Shreekanth Mandayam ECE Department Rowan University.
Time-Frequency and Time-Scale Analysis of Doppler Ultrasound Signals
Paradoxes on Instantaneous Frequency a la Leon Cohen Time-Frequency Analysis, Prentice Hall, 1995 Chapter 2: Instantaneous Frequency, P. 40.
Short Time Fourier Transform (STFT)
Signals Processing Second Meeting. Fourier's theorem: Analysis Fourier analysis is the process of analyzing periodic non-sinusoidal waveforms in order.
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems ECE Spring 2007 Shreekanth Mandayam ECE Department Rowan University.
Lecture 3 Data Encoding and Signal Modulation
S. Mandayam/ ECOMMS/ECE Dept./Rowan University Electrical Communications Systems Spring 2005 Shreekanth Mandayam ECE Department Rowan University.
Basic radio frequency communications - 1 Session 1.
Spectral Analysis Spectral analysis is concerned with the determination of the energy or power spectrum of a continuous-time signal It is assumed that.
Basics of Signal Processing. frequency = 1/T  speed of sound × T, where T is a period sine wave period (frequency) amplitude phase.
HIAPER Cloud Radar Transceiver Exciter Receiver Oscillators High-Powered Amplifier Calibration Exciter Receiver Oscillators High-Powered Amplifier Calibration.
Inputs to Signal Generation.vi: -Initial Distance (m) -Velocity (m/s) -Chirp Duration (s) -Sampling Info (Sampling Frequency, Window Size) -Original Signal.
ES250: Electrical Science
/1 Testing Harmonics and Flicker /1 Harmonics & Flicker Two different test standards: EN & EN EN controls.
Numerical algorithms for power system protection Prof. dr. sc. Ante Marušić, doc. dr. sc. Juraj Havelka University of Zagreb Faculty of Electrical Engineering.
LE 460 L Acoustics and Experimental Phonetics L-13
Ni.com Data Analysis: Time and Frequency Domain. ni.com Typical Data Acquisition System.
GCT731 Fall 2014 Topics in Music Technology - Music Information Retrieval Overview of MIR Systems Audio and Music Representations (Part 1) 1.
Data Transmission The basics of media, signals, bits, carries, and modems (Part II)
COSC 3213 – Computer Networks I Summer 2003 Topics: 1. Line Coding (Digital Data, Digital Signals) 2. Digital Modulation (Digital Data, Analog Signals)
ELECTRICAL CIRCUIT ET 201 Define and explain characteristics of sinusoidal wave, phase relationships and phase shifting.
Motivation Music as a combination of sounds at different frequencies
ICEBI ’07 ICEBI ’07 August 29th – September 2nd 2007 in GRAZ, AUSTRIA An energy efficient wearable tissue monitor ANNUS, Paul; MIN, Mart; PARVE, Toomas;
DOLPHIN INTEGRATION TAMES-2 workshop 23/05/2004 Corsica1 Behavioural Error Injection, Spectral Analysis and Error Detection for a 4 th order Single-loop.
Chemnitz – IWIS2012 – Tutorial 6, September 26, 2012 Electronics and Signals in Impedance Measurements by Mart Min by Mart Min
Lecture 18 DSP-Based Analog Circuit Testing
1 Problem to be solved: Impedance spectrum of dynamic systems is time dependent. Examples: (a) cardiovascular system; (b) microfluidic device. Excitation.
DLS Digital Controller Tony Dobbing Head of Power Supplies Group.
Fundamentals of Electric Circuits Chapter 17
Spectral Analysis AOE March 2011 Lowe 1. Announcements Lectures on both Monday, March 28 th, and Wednesday, March 30 th. – Fracture Testing –
Chi-Cheng Lin, Winona State University CS 313 Introduction to Computer Networking & Telecommunication Theoretical Basis of Data Communication.
ECE 4710: Lecture #6 1 Bandlimited Signals  Bandlimited waveforms have non-zero spectral components only within a finite frequency range  Waveform is.
Lecture 1B (01/07) Signal Modulation
Signals CY2G2/SE2A2 Information Theory and Signals Aims: To discuss further concepts in information theory and to introduce signal theory. Outcomes:
ICEBI ’07 August 29th – September 2nd in GRAZ, AUSTRIA
CEBE IAB Meeting, Sept 16-18, 2013 in Tallinn Research on Signal Processing Cooperation with ELIKO Competence Center in electronics and ICT by Mart Min.
EE104: Lecture 5 Outline Review of Last Lecture Introduction to Fourier Transforms Fourier Transform from Fourier Series Fourier Transform Pair and Signal.
7- 1 Chapter 7: Fourier Analysis Fourier analysis = Series + Transform ◎ Fourier Series -- A periodic (T) function f(x) can be written as the sum of sines.
Electronic Noise Noise phenomena Device noise models
CLASSIFICATION OF ECG SIGNAL USING WAVELET ANALYSIS
FUNCTION GENERATOR.
Short Time Fourier Transform (STFT) CS474/674 – Prof. Bebis.
COMPUTER NETWORKS and INTERNETS
Spectral Analysis Spectral analysis is concerned with the determination of the energy or power spectrum of a continuous-time signal It is assumed that.
Fast Electrical Impedance Spectroscopy measurement techniques for dynamic bioimpedance characterization. Ph.D. Student: B.Sánchez Thesis Advisor: R.Bragós.
expanded by Jozef Goetz, 2014 The McGraw-Hill Companies, Inc., 2007
Direct Digital Synthesis: Applications to Radar
Image Processing, Leture #14
10.6 Fourier Transform Mass Spectrometry
8.6 Autocorrelation instrument, mathematical definition, and properties autocorrelation and Fourier transforms cosine and sine waves sum of cosines Johnson.
The Frequency Domain Any wave shape can be approximated by a sum of periodic (such as sine and cosine) functions. a--amplitude of waveform f-- frequency.
Presentation transcript:

Fast and wideband Identification of Systems: Fast and wideband Identification of Systems: broadband excitation and the processing of responses (Impedance Spectroscopy) Examples: electrical bioimpedance and electrochemical impedance by Mart Min Jäneda, 17. juuni, 2013

Introduction Fast frequency domain analysis of impedance is required when the system under test is not stationary, e.g. in high throuput microfluidic devices, fuel cell analysers, lab-on-chip devices, cardiac monitors, implantable pacemakers, pulmonary Joint time-frequency analysis is required, because the spectra are time dependent (time-frequency-intensity diagrams for Re and Im). Questions: 1) what kind of waveforms are the most suitable for excitation when the fast broadband analysis is required? 2) what kind of signal processing methods could be used for processing the responses to such excitations ? 2 Jäneda, 17. juuni, 2013

Wavelets, chirplets, chirplet transform Wavelets (Haar, ) – the beginning of scalable signal basis Gabor Transform (Dennis Gabor, 1946) – beginning of time-frequency analysis Wilson – multiresolution FFT (1992), also fractional FFT Chirp&Chirplet Transform – Simon Haykin and Steve Mann (1991) Theoretical (mathematical) bases for joint time-frequency analysis – Leon Cohen (1990ies). Our task: developing of signal generation and processing modifications optimal for certain applications where time is relevant. 3 Jäneda, 17. juuni, 2013

Focus: synthesis of appropriate excitation waveforms and developing signal processing methods for the fast time dependent spectral analysis – intensity and phase shift versus time and frequency. a)b)c) d) 4 Jäneda, 17. juuni, 2013

Rectangular pulses T 2/  of max value 1/T 2/T Waveforms for excitation signals 5 Jäneda, 17. juuni, 2013

Sinc functions (sinus cardinalis ) sinc(ωt) = sin(ωt) / (ωt) real sinc, limited to 6 periods real sinc, windowed by Hanning 2T 1.0 time 6 periods = 12T 0 6 Amplitude Jäneda, 17. juuni, 2013

Sinc & Gaussian pulses sinc(ωt) = max 2T TGTG 0.5max 0 1/2T time lin f 1/T G max 0.5max 0 sin(ωt)/(ωt) Gaussian G(t) = A 0 exp(-0.5(t/  ) 2 ) 7 Jäneda, 17. juuni, 2013

Using of linear chirp excitation BW = 10 kHz to 1 MHz lin f 0 1 MHz linear response lin magn log f 1 MHz1 MHz 10 kHz = 1 / 100  s log response time T pulse = 100  s = t obs amplitude 8 Response from a transplanted muscle 0 Jäneda, 17. juuni, 2013

Exponential chirp and its amplitude spectrum: we can change the amplitude spectrum without modifying amplitudes 9 Jäneda, 17. juuni, 2013

Binary chirp and its amplitude spectrum

Signal processing of sine wave signals Jäneda, 17. juuni, 2013

Signal processing of chirp signals Jäneda, 17. juuni, 2013

Signal processing of chirp signals using quadrature correlation with windowed reference Jäneda, 17. juuni, 2013

Random initial phases Optimised initial phases Jäneda, 17. juuni, 2013 Multisine signals (11 frequencies: 1f, 2f, 4f, f) Random initial phases Optimised initial phases

(a) (b) A sum of four sine waves with frequencies 1f 1, 3f 1, 5f 1, 7f 1 ; A i =1 RMS i = Φ i = 90 0 CF= 2.83 Φ i = optimized CF= 1.45 Jäneda, 17. juuni, 2013 Multisine signals (4 frequencies: 1f, 3f, 5f, 7f)

CF = corresponds to a single sine wave Optimal crest factors (CF) of multisine signals Jäneda, 17. juuni, 2013

Multifrequency excation as a sequence of binary pulses (binary multifrequency signal)

Jäneda, 17. juuni, 2013 QUADRA TM FAMILY IMPEDANCE SPECTROSCOPY DEVICES: Fast and Wideband Frequency range covered simultaneously: selectable, maximally from 1 kHz to 400 kHz during 1 ms. Number of frequency components in the covered range: selectable from 4 to 16.

Target applications in biology and medicine include: Single cell and multi-cell studies Biomaterial studies and bioengineering Processes in microfluidics, continuous and droplet flow Reconstructive surgery, tissue and organ transplantation Monitoring and diagnosing of ischemic phenomena Cardiovascular monitoring and diagnosing Many other applications in medical monitoring and diagnosing Jäneda, 17. juuni, 2013 QUADRA TM FAMILY IMPEDANCE SPECTROSCOPY DEVICES: Application Areas

Algne plaan (AD 2010):  Vähemalt 8 mõõtekanalit;  Vähemalt 4 mõõtesagedust, mis genereeritakse vajadusel igas kanalis;  1 ms mõõteaken impedantsi tulemuste jaoks;  Mõõtesageduste vahemik: 1 kHz – 1MHz;  Impedantsi mõõtevahemik 1 Ω – 1 kΩ;  Piiratud vooluga vooluallikas, max 400uA;  Sidekanal: USB 3.0 või Ethernet (optiline);  Altium NanoBoard 3000XN – with fixed Xilinx® Spartan™-3AN device; (XC3S1400AN-4FGG676C)  Vähemalt 1024 punktiline FFT

Hetkeseis: 2013 SOOVITUD  1 ms – 1 s mõõteaken  Mõõtesignaal – arbitrary (n Mpunkti)  I/O vähemalt 200 Msps, 50 oomi, DC  Sidekanal: USB 3.0 või Gbit Ethernet  Virtex 6 / bit ADC & 16 bit DAC  Vähemalt 64 kilopunktiline FFT (x2)  Sünkro sisse ja välja TEGELIK Ca 1 ms mõõteaken (ei ole täpne) Arbitrary 64 k punkti I/O ca 65 Msps, 50 oomi, AC Sidekanal: Gigabit Ethernet ca 110 Mbps Virtex 6, ML605 kit + FMC kpunkti FFT mõlemas kanalis Sünkro puudub EK-V6-ML605-D AES-FMC-4DSP150 + üksjagu koodi

Tuleb teha:  Uus analoog plaat FMC150 asemel järgmise poolaasta plaanis.  Olemasolevat lahendust tuleb igakülgselt kontrollida ja hinnata: o Miks suurematel kiirustel ebastabiilne? o Miks 1 ms mõõteaken on muutlik? o Kas n*64 k punkti arb oleks reaalne, i.e. mõõteaken sammuga 1ms, 10ms, kuni 10s ? o Kas DAC’id õnnestuks 400 (800) Msps kiirusega käima panna, hoides ADC 200 Msps kiirusel? o Miks Gbit Ethernet vaevalt 100 Mbit kiirusega käib (võiks 500 Mbit)? o Sünkro küsimused?  Lahenduse optimeerimine!  (sisseehitatud) testimine !  Uute signaalitöötlusmeetodite arendamine ja võrdlus optimeeritud FFT’ga ! Jäneda, 17. juuni, 2013

Thank you for listening !!! Jäneda, 17. juuni, 2013