RESISTIVE CIRCUITS MULTI NODE/LOOP CIRCUIT ANALYSIS.

Slides:



Advertisements
Similar presentations
Kirchhoff's Rules Continued
Advertisements

Chapter 8 – Methods of Analysis and Selected Topics (dc)
ECE 3336 Introduction to Circuits & Electronics
DC CIRCUIT ANALYSIS: NODE AND MESH METHOD
1 Lecture 2 Dr Kelvin Tan Electrical Systems 100.
LECTURE 2.
Chapter 3 Methods of Analysis
Methods of Analysis PSUT 1 Basic Nodal and Mesh Analysis Al-Qaralleh.
Chapter 8 Methods of Analysis. 2 Constant Current Sources Maintains same current in branch of circuit –Doesn’t matter how components are connected external.
Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 4 Basic Nodal and Mesh Analysis.
Methods of Analysis Eastern Mediterranean University 1 Methods of Analysis Mustafa Kemal Uyguroğlu.
1 Chapter 3 Methods of Analysis Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
NODAL AND LOOP ANALYSIS TECHNIQUES
Kevin D. Donohue, University of Kentucky
CHAPTER-2 NETWORK THEOREMS.
RESISTIVE CIRCUITS KIRCHHOFF’S LAWS - THE FUNDAMENTAL CIRCUIT CONSERVATION LAWS- KIRCHHOFF CURRENT (KCL) AND KIRCHHOFF VOLTAGE (KVL)
1 Chapter 3 Methods of Analysis Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
EENG 2610: Circuit Analysis Class 4: Nodal Analysis
E E 1205 Circuit Analysis Lecture 2 - Circuit Elements and Essential Laws.
Electric Circuit Theory
The second systematic technique to determine all currents and voltages in a circuit IT IS DUAL TO NODE ANALYSIS - IT FIRST DETERMINES ALL CURRENTS IN A.
Chapter 8 Methods of Analysis. Constant Current Sources Maintains the same current in the branch of the circuit regardless of how components are connected.
Chapter 8 – Methods of Analysis and Selected Topics (dc) Introductory Circuit Analysis Robert L. Boylestad.
EENG 2009 FS 2006 Part 5: Nodal Analysis 146 EENG 2009 Part 5. Nodal Analysis 5.1 Nodes and Node Voltages 5.2 Nodal Analysis By Example 5.3 Supernodes.
BYST Circuit -F2003: Nodal and Mesh Analysis 92 CPE220 Electric Circuit Analysis Chapter 3: Nodal and Mesh Analyses.
Methods of Analysis ELEC 202 Electric Circuit Analysis II.
ENGR-43_Lec-03-1b_Nodal_Analysis.ppt 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Registered.
METHODS OF CIRCUIT ANALYSIS
Chapter 4 Techniques of Circuit Analysis So far we have analyzed relatively simple resistive circuits by applying KVL and KCL in combination with Ohm’s.
Lecture - 5 Nodal analysis. Outline Terms of describing circuits. The Node-Voltage method. The concept of supernode.
Methods of Analysis Chapter 3. Introduction We are now prepared to apply Ohm’s law and Kirchhoff’s laws to develop two powerful techniques for circuit.
305221, Computer Electrical Circuit Analysis การวิเคราะห์วงจรไฟฟ้าทาง คอมพิวเตอร์ 3(2-3-6) ณรงค์ชัย มุ่งแฝงกลาง คมกริช มาเที่ยง สัปดาห์ที่ 3 Nodal.
1 © Unitec New Zealand DE4401&APTE 5601 Topic 4 N ETWORK A NALYSIS.
SERIES RESISTORS AND VOLTAGE DIVISION In Fig the two resistors are in series, since the same current i flows in both of them. Applying Ohm’s law.
Lecture 8 Review: Mesh Analysis Related educational materials:
LOOP ANALYSIS The second systematic technique to determine all currents and voltages in a circuit IT IS DUAL TO NODE ANALYSIS - IT FIRST DETERMINES ALL.
NODE ANALYSIS One of the systematic ways to determine every voltage and current in a circuit The variables used to describe the circuit will be “Node Voltages”
Fundamentals of Electric Circuits
KIRCHHOFF CURRENT LAW ONE OF THE FUNDAMENTAL CONSERVATION PRINCIPLES IN ELECTRICAL ENGINEERING “ CHARGE CANNOT BE CREATED NOR DESTROYED ”
Grossman/Melkonian Chapter 3 Resistive Network Analysis.
Chapter 8 – Methods of Analysis Lecture 10 by Moeen Ghiyas 05/12/
Mesh Analysis Introducing Supermeshes!!!. Mesh Analysis A mesh is a loop with no other loops within it; an independent loop. Mesh analysis provides another.
Ch 3: Methods of Analysis
The second systematic technique to determine all currents and voltages in a circuit IT IS DUAL TO NODE ANALYSIS - IT FIRST DETERMINES ALL CURRENTS IN A.
Mesh Analysis Introducing Supermeshes!!!. Mesh Analysis A mesh is a loop with no other loops within it; an independent loop. Mesh analysis provides another.
NODAL AND LOOP ANALYSIS TECHNIQUES
Chapter 3 Methods of Analysis
SCHOOL OF ENGINEERING Introduction to Electrical and Electronic Engineering Part 2 Pr. Nazim Mir-Nasiri and Pr. Alexander Ruderman.
Chapter 3 Methods of Analysis
Power and Energy Consider the product of voltage and current. V  I
Additional Circuit Analysis Techniques
Chapter 3 Methods of Analysis
CHAPTER 2: DC Circuit Analysis and AC Circuit Analysis
Chapter 2 Resistive Circuits
Introducing Supernodes!!!
Lecture 2 - Circuit Elements and Essential Laws
Part B - Mesh Analysis Ch. 3 – Methods of Analysis Based on KVL
Alexander-Sadiku Fundamentals of Electric Circuits
Ch. 3 – Methods of Analysis
Kirchoff’s Laws.
Lecture 9 Review: Constrained loops Additional mesh analysis examples
Lecture 9 Review: Constrained loops Additional mesh analysis examples
Kirchoff’s Laws.
Chapter 3 Methods of Analysis
Lecture 2 - Circuit Elements and Essential Laws
Chapter 9.
KIRCHHOFF CURRENT LAW ONE OF THE FUNDAMENTAL CONSERVATION PRINCIPLES
Kirchhoff’s Laws.
طرق تحليل الدوائر الكهربائية
Chapter 3 – Methods of Analysis
Presentation transcript:

RESISTIVE CIRCUITS MULTI NODE/LOOP CIRCUIT ANALYSIS

DEFINING THE REFERENCE NODE IS VITAL UNTIL THE REFERENCE POINT IS DEFINED BY CONVENTION THE GROUND SYMBOL SPECIFIES THE REFERENCE POINT. ALL NODE VOLTAGES ARE MEASURED WITH RESPECT TO THAT REFERENCE POINT

THE STRATEGY FOR NODE ANALYSIS 1. IDENTIFY ALL NODES AND SELECT A REFERENCE NODE 2. IDENTIFY KNOWN NODE VOLTAGES 3. AT EACH NODE WITH UNKNOWN VOLTAGE WRITE A KCL EQUATION (e.g.,SUM OF CURRENT LEAVING =0) 4. REPLACE CURRENTS IN TERMS OF NODE VOLTAGES AND GET ALGEBRAIC EQUATIONS IN THE NODE VOLTAGES... REFERENCE SHORTCUT: SHORTCUT: SKIP WRITING THESE EQUATIONS... AND PRACTICE WRITING THESE DIRECTLY

NODE 1 WE VISUALIZE THE CURRENTS LEAVING AND WRITE THE KCL EQUATION REPEAT THE PROCESS AT NODE 2 OR VISUALIZE CURRENTS GOING INTO NODE WRITE THE KCL EQUATIONS

CURRENTS COULD BE COMPUTED DIRECTLY USING KCL AND CURRENT DIVIDER!! IN MOST CASES THERE ARE SEVERAL DIFFERENT WAYS OF SOLVING A PROBLEM NODE EQS. BY INSPECTION Once node voltages are known Node analysis

3 nodes plus the reference. In principle one needs 3 equations... …but two nodes are connected to the reference through voltage sources. Hence those node voltages are known!!! …Only one KCL is necessary Hint: Each voltage source connected to the reference node saves one node equation THESE ARE THE REMAINING TWO NODE EQUATIONS

Conventional analysis requires all currents at 2 eqs, 3 unknowns...Panic!! The current through the source is not related to the voltage of the source Math solution: add one equation Efficient solution Efficient solution: enclose the source, and all elements in parallel, inside a surface. Apply KCL to the surface!!! The source current is interior to the surface and is not required We STILL need one more equation Only 2 eqs in two unknowns!!! SUPERNODE THE SUPERNODE TECHNIQUE

ALGEBRAIC DETAILS

SOURCES CONNECTED TO THE REFERENCE SUPERNODE CONSTRAINT EQUATION SUPERNODE

Apply node analysis to this circuit There are 4 non reference nodes There is one super node There is one node connected to the reference through a voltage source We need three equations to compute all node voltages …BUT THERE IS ONLY ONE CURRENT FLOWING THROUGH ALL COMPONENTS AND IF THAT CURRENT IS DETERMINED ALL VOLTAGES CAN BE COMPUTED WITH OHM’S LAW I STRATEGY: 1. Apply KVL (sum of voltage drops =0) 2. Use Ohm’s Law to express voltages in terms of the “loop current.” RESULT IS ONE EQUATION IN THE LOOP CURRENT!!! SHORTCUT Skip this equation Write this one directly

LOOPS, MESHES AND LOOP CURRENTS EACH COMPONENT IS CHARACTERIZED BY ITS VOLTAGE ACROSS AND ITS CURRENT THROUGH A LOOP IS A CLOSED PATH THAT DOES NOT GO TWICE OVER ANY NODE. THIS CIRCUIT HAS THREE LOOPS fabcdef A MESH IS A LOOP THAT DOES NOT ENCLOSE ANY OTHER LOOP. fabef, ebcde ARE MESHES A LOOP CURRENT IS A (FICTICIOUS) CURRENT THAT IS ASSUMED TO FLOW AROUND A LOOP fabef ebcde A MESH CURRENT IS A LOOP CURRENT ASSOCIATED TO A MESH. I1, I2 ARE MESH CURRENTS CLAIM: CLAIM: IN A CIRCUIT, THE CURRENT THROUGH ANY COMPONENT CAN BE EXPRESSED IN TERMS OF THE LOOP CURRENTS FACT: FACT: NOT EVERY LOOP CURRENT IS REQUIRED TO COMPUTE ALL THE CURRENTS THROUGH COMPONENTS THE DIRECTION OF THE LOOP CURRENTS IS SIGNIFICANT FOR EVERY CIRCUIT THERE IS A MINIMUM NUMBER OF LOOP CURRENTS THAT ARE NECESSARY TO COMPUTE EVERY CURRENT IN THE CIRCUIT. SUCH A COLLECTION IS CALLED A MINIMAL SET (OF LOOP CURRENTS).

FOR A GIVEN CIRCUIT LET BNUMBER OF BRANCHES NNUMBER OF NODES THE MINIMUM REQUIRED NUMBER OF LOOP CURRENTS IS MESH CURRENTS ARE ALWAYS INDEPENDENT AN EXAMPLE TWO LOOP CURRENTS ARE REQUIRED. THE CURRENTS SHOWN ARE MESH CURRENTS. HENCE THEY ARE INDEPENDENT AND FORM A MINIMAL SET KVL ON LEFT MESHREPLACING AND REARRANGING DETERMINATION OF LOOP CURRENTS KVL ON RIGHT MESHUSING OHM’S LAW

DRAW THE MESH CURRENTS. ORIENTATION CAN BE ARBITRARY. BUT BY CONVENTION THEY ARE DEFINED CLOCKWISE NOW WRITE KVL FOR EACH MESH AND APPLY OHM’S LAW TO EVERY RESISTOR. AT EACH LOOP FOLLOW THE PASSIVE SIGN CONVENTION USING LOOP CURRENT REFERENCE DIRECTION DEVELOPING A SHORTCUT WHENEVER AN ELEMENT HAS MORE THAN ONE LOOP CURRENT FLOWING THROUGH IT WE COMPUTE NET CURRENT IN THE DIRECTION OF TRAVEL

SHORTCUT: SHORTCUT: POLARITIES ARE NOT NEEDED. APPLY OHM’S LAW TO EACH ELEMENT AS KVL IS BEING WRITTEN REARRANGE EXPRESS VARIABLE OF INTEREST AS FUNCTION OF LOOP CURRENTS THIS SELECTION IS MORE EFFICIENT REARRANGE EXAMPLE: FIND Io AN ALTERNATIVE SELECTION OF LOOP CURRENTS

1. DRAW THE MESH CURRENTS 2. WRITE MESH EQUATIONS MESH 1MESH 2 DIVIDE BY 1k. GET NUMBERS FOR COEFFICIENTS ON THE LEFT AND mA ON THE RHS 3. SOLVE EQUATIONS

THERE IS NO RELATIONSHIP BETWEEN V1 AND THE SOURCE CURRENT! HOWEVER... MESH 1 CURRENT IS CONSTRAINED MESH 1 EQUATIONMESH 2“BY INSPECTION” CURRENT SOURCES THAT ARE NOT SHARED BY OTHER MESHES (OR LOOPS) SERVE TO DEFINE A MESH (LOOP) CURRENT AND REDUCE THE NUMBER OF REQUIRED EQUATIONS TO OBTAIN V1 APPLY KVL TO ANY CLOSED PATH THAT INCLUDES V1 KVL

CURRENT SOURCES SHARED BY LOOPS - THE SUPERMESH APPROACH 1. SELECT MESH CURRENTS 2. WRITE CONSTRAINT EQUATION DUE TO MESH CURRENTS SHARING CURRENT SOURCES 3. WRITE EQUATIONS FOR THE OTHER MESHES SUPERMESH 4. DEFINE A SUPERMESH BY (MENTALLY) REMOVING THE SHARED CURRENT SOURCE SUPERMESH 5. WRITE KVL FOR THE SUPERMESH NOW WE HAVE THREE EQUATIONS IN THREE UNKNOWNS. THE MODEL IS COMPLETE

Three independent current sources. Four meshes. One current source shared by two meshes. For loop analysis we notice... Careful choice of loop currents should make only one loop equation necessary. Three loop currents can be chosen using meshes and not sharing any source. SOLVE FOR THE CURRENT I4. USE OHM’S LAW TO C0MPUTE REQUIRED VOLTAGES Now we need a loop current that does not go over any current source and passes through all unused components. HINT: IF ALL CURRENT SOURCES ARE REMOVED THERE IS ONLY ONE LOOP LEFT MESH EQUATIONS FOR LOOPS WITH CURRENT SOURCES KVL OF REMAINING LOOP