Homework 1 Unit 2. Problems 13, 16, 18, Unit 3. Problems 9. 18, 19, 20 For Honors: special assignment (talk with me after the lecture if you have not done.

Slides:



Advertisements
Similar presentations
Astronomy 1 – Winter 2011 Lecture 4; January
Advertisements

From Aristotle to Newton
Chapter 1: Origins of Modern Astronomy
Goals Explain how accurate observations led to Heliocentric model Review contributions of Galileo and Kepler Explain Kepler’s Laws Explain Newton’s laws.
Week 5 Day 1: Announcements. Comments on Mastering Astronomy.
The Origin of Modern Astronomy
Chapter 4 Gravitation and the Waltz of the Planets.
Early Models of the Universe. Pythagoreans (500 B.C.) Believed the stars, planets, sun, and moon were attached to crystalline spheres which rotated around.
Do our planets move?.
Models of the Solar System *Early Models of the Solar System *Kepler’s Laws.
 History of Astrology.  Claudius Ptolemy – 87 – 150 CE  Nicholas Copernicus – 1473 – 1543  Galileo Galilei – 1564 – 1642  Johannes Kepler – 1571.
Observing the solar system
CHAPTER 2: Gravitation and the Waltz of the Planets.
Web 1 Ancient Theories of Solar System 1.heliocentric theory 2. geocentric theory 3. Aristotle 4. Aristarchus 5. Ptolemy 6. Copernicus 7. Johannes Kepler.
Ancient astronomy Geocentric Heliocentric Mass and Gravity GalileoKepler Newton $ 200 $ 200$200 $ 200 $ 200 $400 $ 400$400 $ 400$400 $600 $ 600$600.
What we know about the Universe.  A celestial body is a natural object out in space such as a planet, a moon, an asteroid, a comet, or a star.  People.
Today’s topics Orbits Parallax Angular size and physical size Precession Reading sections 1.5, 2.6,
Homework 1 Unit 2. Problems 13, 16, 18, Unit 3. Problems 9. 18, 19, 20 For Honors: special assignment (talk with me after the lecture if you have not done.
Unit 4 Space Chapter 10…What we know about the universe has taken us thousands of years to learn.
Origin of Modern Astronomy
Observing the Solar System. Observers in Ancient Greece noticed that although the stars seemed to move, they stayed in the same position relative to one.
The History of Astronomy brought to you by: Mr. Youngberg.
What is the purpose behind Astronomy? Explore the unknown beyond our atmosphere Track planets, satellites (moons), stars, comets Keeping time = Calendar.
Solar System Models Geocentric Model Earth Centered Moon, Sun, Planets, and Stars revolve around the Earth Feels right No observed parallax of stars.
Reminders Answering cell phones during class shaves a little off your grade each time. Answering cell phones during class shaves a little off your grade.
The Dead Guys.
History of Astronomy. Our Universe Earth is one of nine planets that orbit the sun The sun is one star in 100 billion stars that make up our galaxy- The.
Goals Explain how accurate observations led to Heliocentric model Explain retrograde motion Describe contributions of Copernicus, Tycho, Galileo, and.
The Origin of Modern Astronomy
Astronomy The Science that Studies The Universe Ancient Greeks To Isaac Newton.
Day 3 Chapter 2 Gravitation and the Motion of the Planets.
Origins of Modern Astronomy
Kepler’s Laws of Planetary Motion. Debate on Planet Motions Geocentric or Heliocentric Universe.
Bellwork 1.Who is credited with the revolutionary model of a HELIOCENTRIC solar system? A. Aristotle B. Ptolemy C. Galileo D. Copernicus 2.The planets.
Moon’s Motion: Lunar Month Synodic month: time from one new moon to the next (29.53 days) Sideral month: time it takes the Moon to complete one orbit (27.32.
Chapter 2 The Copernican Revolution. Chapter 2 Learning Objectives  Know the differences and similarities between the geocentric and heliocentric models.
CHAPTER 4 Gravitation and the Waltz of the Planets CHAPTER 4 Gravitation and the Waltz of the Planets.
Astronomy  Astronomy is the study of the planets and other objects in space.  The “Golden Age of Astronomy” occurred during 600 – 150 B.C. when the ancient.
Ch. 22 Origin of Modern Astronomy Sec. 1 Early Astronomy 200.
EARTH & SPACE SCIENCE Chapter 27 Planets of the Solar System 27.2 Models of the Solar System.
Early Astronomy Chapter 22, Section 1.
Quiz #2 Review Giants of Science (Ch. 2), Gravity and Motion (Ch. 3) Light and Atoms (Ch. 4) Thursday 29 September 2011 Also study the Quiz 1 recap notes.
“Intro to Astronomy” §Terms You Need To Know! 1. Astronomy- The study of everything outside of the earth’s atmosphere. 2. Celestial Sphere - Imaginary.
ASTRONOMY AND THE BIRTH OF MODERN SCIENCE. ANCIENT ASTRONOMY Human Survival  Predict when to plant crops Indian ruins line up with Summer and winter.
Ch 22 Astronomy. Ancient Greeks 22.1 Early Astronomy  Astronomy is the science that studies the universe. It includes the observation and interpretation.
Epicycles Ptolemy ( C.E.) improved the geocentric models by including epicycles –Planets were attached to small circles (epicycles) that rotated.
Charting the Heavens: Foundations of Astronomy Learning Goals Describe the Celestial Sphere and how astronomers use angular measurement to locate objects.
What we know about the universe has taken us thousand of years.
Models of the Solar System
Title your notes: Models of the Solar System
Unit 11, problem 3, 16 Unit 12, problem 5, 8, 10, 11, 12 Unit 14, problem 13, 14 Unit 15 problem 10, 13.
The “Geocentric Model” Aristotle vs. Aristarchus (3 rd century B.C.): Aristotle: Sun, Moon, Planets and Stars rotate around fixed Earth. Ancient Greek.
Models of the Solar System. Earliest Astronomers (Before 400 BC) ► Early civilizations (e.g., Maya, Babylonians) observed the heavens for religious and.
1 The Dead Guys. 2 Timeline 3 Ancient Astronomy.
Introduction to Classical Astronomy Mr. Ross Brown Brooklyn School for Law and Technology.
What we know about the universe has taken us thousand of years.
CHAPTER 2: Gravitation and the Waltz of the Planets.
EARTH & SPACE SCIENCE Chapter 27 Planets of the Solar System 27.2 Models of the Solar System.
CHAPTER 27 SECTION 2 EARTH AND SPACE AUSTIN HIGH SCHOOL Models of the Solar System.
I. Early History of Astronomy
Astronomy HISTORY OF ASTRONOMY. The scientific method had not been invented yet Most of the ideas of the time were based on Pure Thought The ideas of.
PHYS 155 – Introductory Astronomy observing sessions: - observing sessions: Sunday – Thursday, 9pm, weather permitting
CHAPTER 2: Gravitation and the Waltz of the Planets.
Bellwork Who is credited with the revolutionary model of a HELIOCENTRIC solar system? A. Aristotle B. Ptolemy C. Galileo D. Copernicus The planets loop.
planets moons asteroids comets stars
Periods of Western Astronomy
The Copernican Revolution
CHAPTER 27.2: Gravitation and the
Periods of Western Astronomy
The Early History of Astronomy
Presentation transcript:

Homework 1 Unit 2. Problems 13, 16, 18, Unit 3. Problems 9. 18, 19, 20 For Honors: special assignment (talk with me after the lecture if you have not done this) Unit 8. Problem 20 Unit 10. Problem 17, 18 Reading: We covered first week Units 1-9 Jan. 30 Units 10-12

During the winter the temperature is lower because the Sun A. Stops moving B. has lower temperature C. is farther away from the Earth D. does not rise as high in the sky

Size of the Earth Eratosthenes ( b.c.e.) wanted to know the size of the Earth He noted that the sun could be seen from the bottom of a well in Syene, so the Sun must be directly overhead Then he measured the angle the Sun made with the horizon in Alexandria (7 degrees) Calculated a diameter of 13,000 km, almost exactly correct!

Measuring Angular Diameter In Astronomy, we will frequently estimate the sizes of planets, etc. To do this, we measure the angle that the object makes in the sky. We say that an object subtends an angle (A) in the sky For example, the moon subtends 0.5 degrees. The Sun also subtends 0.5 degrees, which is why solar eclipses are so beautiful!

Measuring Linear Diameter If we measure the angle subtended by an object in the sky (A), and we know the distance to it (d), we can calculate its actual, linear diameter (L)!

The Motion of the Planets Because the planets’ orbits all lie in more or less the same plane, the paths of the planets through the sky all lie close to the ecliptic, appearing to move through the constellations of the zodiac Only Pluto seems to move far from the ecliptic

Retrograde Motion As the Earth catches up to the orbital position of another planet, that planet seems to move backwards through the sky. This is called retrograde motion Posed a frustrating problem to the ancients – if all planets moved in perfect circles, how could they move backwards, and why only occasionally?

Geocentric Models Models in which everything revolves around the Earth are called Geocentric models. From earliest Greek times, this kind of model was used to describe the heavens Planets and stars resided on their own spheres, each tipped slightly relative to each other. This reproduced the motion of the planets and Sun through the sky. Did not explain retrograde motion!

Epicycles Ptolemy ( C.E.) improved the geocentric models by including epicycles –Planets were attached to small circles (epicycles) that rotated. –These epicycles were attached to a larger circle, centered on Earth This can be visualized as a planet attached to a Frisbee, attached to a bicycle wheel with the Earth at the center. Did a fair job of reproducing retrograde motion.

Heliocentric Models Nicolas Copernicus devised a heliocentric (Sun-centered) model in which everything, including the Earth, revolves around the Sun Retrograde motion is a natural result of these models! Copernicus was also able to measure the relative distances between the Sun and the planets

Mercury and Venus It was found that Mercury and Venus were closer to the Sun than the Earth, as they were never found very far from the Sun in the sky Mercury’s greatest elongation, or angular separation from the Sun, is never more than 28 degrees Venus’s greatest elongation is never more than 47 degrees Mercury is therefore closer to the Sun than Venus

Tycho Brahe ( C.E.) Built instruments to measure the positions of planets very accurately (~1 arc minute) Found that comets moved outside of the Earth’s atmosphere Witnessed a supernova and concluded that it was much farther away than any celestial sphere As he could detect no parallax motion in the stars, he held that the planets go around the Sun, but the Sun, in turn, orbits around the Earth

Johannes Kepler ( Using Tycho Brahe’s data, discovered that planets do not move in circles around the Sun, rather, they follow ellipses with the Sun located at one of the two foci!

Kepler’s First Law Planets move in elliptical orbits with the Sun at one focus of the ellipse –Developed a heliocentric (Sun-centered) model –Did not agree with the ancients (or Brahe!) –The shape of the ellipse is described by its semi- major and semi-minor axes.

Kepler’s Second Law The orbital speed of a planet varies so that a line joining the Sun and the planet will sweep out equal areas in equal time intervals That is, planets move faster when near the Sun, and slower when farther from the Sun Explained the non-circular behavior of the planets!

Kepler’s Third Law The amount of time a planet takes to orbit the Sun (its period) P is related to its orbit’s size, a, by P 2 = a 3 Kepler’s Laws describe the shape of a planet’s orbit, its orbital period, and how far from the Sun the planet is positioned. These were empirical relationships, found from observation rather than the logic of the ancients.

Galileo Galilei ( ) Using a Dutch-designed telescope that he built himself, he made several startling observations that disproved ancient thinking about the Universe –Found sunspots, showing that the Sun was not a perfect sphere –Found craters on the Moon, showing that the Moon was not a perfect sphere –Discovered four moons of Jupiter, showing that not everything revolved around the Sun –Observed the rings of Saturn –Observed that Venus passed through all phases, just as the Moon does. In a geocentric model, the phases of Venus were limited to crescents. One of the principal founders of the experimental method for studying scientific problems.

Isaac Newton ( ) Isaac Newton described the fundamental laws covering the motion of bodies Had to invent his own mathematics (Calculus) to do it! His work is used even today in calculating everything from how fast a car stops when you apply the brakes, to how much rocket fuel to use to get to Saturn! And he did most of it before his 24 th birthday…