Wireless access networks  shared wireless access network connects end system to router  via base station aka “access point”  wireless LANs:  802.11b/g.

Slides:



Advertisements
Similar presentations
Computer Networks Performance Metrics Advanced Computer Networks Fall 2013.
Advertisements

Computer Networks Performance Metrics Computer Networks Term B10.
Introduction 1-1 Chapter 1: Introduction Our goal:  get “feel” and terminology  more depth, detail later in course  approach:  use Internet as example.
James 1:5 If any of you lacks wisdom, he should ask God, who gives generously to all without finding fault, and it will be given to him.
CS 381 Introduction to computer networks Chapter 1 - Lecture 3 2/5/2015.
Introduction© Dr. Ayman Abdel-Hamid, CS4254 Spring CS4254 Computer Network Architecture and Programming Dr. Ayman A. Abdel-Hamid Computer Science.
Lecture 2 Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit.
Some slides are in courtesy of J. Kurose and K. Ross Review of Previous Lecture Course Administrative Trivia Internet Architecture Network Protocols Network.
Networking Based on the powerpoint presentation of Computer Networking: A Top Down Approach Featuring the Internet, Third Edition, J.F. Kurose and K.W.
Network core.
Physical Layer 1b session 1 TELE3118: Network Technologies Week 1: Physical Layer Some slides have been taken from:  Computer Networking: A Top.
Lecture Internet Overview: roadmap 1.1 What is the Internet? (A simple overview last week) Today, A closer look at the Internet structure! 1.2 Network.
Lets begin…. Introduction1-2 Access networks and physical media Q: How to connect end systems to edge router? residential access nets institutional access.
1: Introduction1 Part I: Introduction Chapter goal: r get context, overview, “feel” of networking r more depth, detail later in course r approach: m descriptive.
Lecture Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Lecture Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Introduction 1 Lecture 3 Networking Concepts slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering Department.
Introduction A closer look at network structure: network edge: – hosts: clients and servers – servers often in data centers  access networks, physical.
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April Reading.
Introduction1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July A note.
CS 3830 Day 2 Introduction 1-1. Announcements  Program 1 posted on the course web  Project folder must be in 1DropBox on S drive by: 9/14 at 3pm  Must.
1: Introduction1 Packet switching versus circuit switching r Great for bursty data m resource sharing m no call setup r Excessive congestion: packet delay.
Overview-Part2.
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on.
CS671 Advanced Computer Networking Chen Qian Fall 2014 Introduction CQ (2014) 1-1.
Introduction1-1 Chapter 1: Introduction Our goal:  get “feel” and terminology  more depth, detail later in course  approach:  use Internet as example.
Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
2-1 Last time  Course mechanics  What is the Internet?  hosts, routers, communication links  communications services, protocols  Network Edge  client-server,
Slides originally from Professor Williamson at U Calgary1-1 Introduction Part II  Network Core  Delay & Loss in Packet-switched Networks  Structure.
Instructor: Christopher Cole Some slides taken from Kurose & Ross book IT 347: Chapter 1.
Chapter 1 Introduction Terminology, Net Edge Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Networking Networking 101 Notes are adapted from chapter-1 in the textbook Multimedia Streaming {week-2} Mohamed Abdel-Maguid Computer Networking:
How do loss and delay occur?
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Introduction 1-1 “Real” Internet delays and routes  What do “real” Internet delay & loss look like?  Traceroute program: provides delay measurement from.
Computer Networks Performance Metrics. Performance Metrics Outline Generic Performance Metrics Network performance Measures Components of Hop and End-to-End.
Introduction Chapter 1: roadmap 1.1 what is the Internet? 1.2 network edge  end systems, access networks, links 1.3 network core  packet switching, circuit.
Lecture 5: Internetworking: A closer View By Dr. Najla Al-Nabhan Introduction 1-1.
Lecture 4 Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CS3516: These slides are generated from.
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
Computer Networks Performance Metrics
Introduction1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure.
CE3710 Tutorial FAROOQUI NK. What’s the Internet: “nuts and bolts” view  millions of connected computing devices: hosts = end systems  running network.
Four sources of packet delay
1 Computer Networks & The Internet Lecture 4 Imran Ahmed University of Management & Technology.
Introduction 1-1 Chapter 1 Part 3 Delay, loss and throughput These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose,
CS 3830 Day 4 Introduction 1-1. Announcements  No office hour 12pm-1pm today only  Quiz on Friday  Program 1 due on Friday (put in DropBox on S drive)
Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
EEC-484/584 Computer Networks
Chapter 1: roadmap 1.1 what is the Internet? 1.2 network edge  end systems, access networks, links 1.3 network core  packet switching, circuit switching,
Introduction Adapted from PowerPoint slides of J.F.Kurose, K.W.Ross Computer Netowrks: A top-down approach Zhang, Net. Admin, Spring 2012.
What is the Speed of the Internet? Internet Computing KUT Youn-Hee Han.
Access networks and physical media Q: How to connect end systems to edge router? residential access nets institutional access networks (school,
CPSC441 Computer Communications Aniket Mahanti Introduction 1-1.
Network Behaviour & Impairments
Computer Networks Performance Metrics Computer Networks Spring 2013.
“Real” Internet delays and routes  What do “real” Internet delay & loss look like?  Traceroute program: provides delay measurement from source to router.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 2 Omar Meqdadi Department of Computer Science and Software Engineering.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
CSEN 404 Introduction to Networks Amr El Mougy Lamia AlBadrawy.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 3 Omar Meqdadi Department of Computer Science and Software Engineering.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
Physical Media physical link: what lies between transmitter & receiver
Introduction (2) Overview: access net, physical media
Introduction to Networks
Administrative Things
Overview Network access and physical media Internet structure and ISPs
EEC-484/584 Computer Networks
Presentation transcript:

Wireless access networks  shared wireless access network connects end system to router  via base station aka “access point”  wireless LANs:  b/g (WiFi): 11 or 54 Mbps  wider-area wireless access  3G/4G provided by telco operator  4G: ~10Mbps over cellular system (LTE) base station mobile hosts router

Home networks Typical home network components:  DSL or cable modem  router/firewall/NAT  Ethernet  wireless access point wireless access point wireless laptops router/ firewall cable modem to/from cable headend Ethernet

Physical Media  bit: propagates between transmitter/rcvr pairs  physical link: what lies between transmitter & receiver  guided media:  signals propagate in solid media: copper, fiber, coax  unguided media:  signals propagate freely, e.g., radio Twisted Pair (TP)  two insulated copper wires  Category 3: traditional phone wires, 10 Mbps Ethernet  Category 5: 100Mbps Ethernet

Physical Media: coax, fiber Coaxial cable:  two concentric copper conductors  bidirectional  baseband:  single channel on cable  legacy Ethernet  broadband:  multiple channels on cable  HFC Fiber optic cable:  glass fiber carrying light pulses, each pulse a bit  high-speed operation:  high-speed point-to-point transmission (e.g., 10’s- 100’s Gpbs)  low error rate: repeaters spaced far apart ; immune to electromagnetic noise

Physical media: radio  signal carried in electromagnetic spectrum  no physical “wire”  bidirectional  propagation environment effects:  reflection  obstruction by objects  interference Radio link types:  LAN (e.g., WiFi)  11Mbps, 54 Mbps  wide-area (e.g., cellular)  3G cellular: ~ 1 Mbps  4G cellular: ~ 10 Mbps  Satellite (e.g., geo-stat and low- earth orbiting)  Kbps to 45Mbps channel (or multiple smaller channels)  270 msec end-end delay

Summary r Network access and physical media r Internet structure and ISPs r Delay & loss in packet-switched networks r Protocol layers, service models r Recitation yesterday (1/13) in Tech L221 r Recitation tomorrow (1/15) in Tech L221 r Homework 1 out, due 1/23. r Project 1 ready, should have found partners.

Internet structure: network of networks (several years ago) r Roughly hierarchical r At center: “tier-1” ISPs (e.g., UUNet, BBN/Genuity, Sprint, AT&T), national/international coverage m treat each other as equals, near-clique Tier 1 ISP Tier-1 providers interconn ect (peer) privately NAP Tier-1 providers also interconnect at public network access points (NAPs) POP

Internet structure: network of networks (today)  roughly hierarchical  at center: small # of well-connected large networks  “tier-1” commercial ISPs (e.g., Verizon, Sprint, AT&T, Qwest, Level3), national & international coverage  large content distributors (Google, Akamai, Microsoft)  treat each other as equals (no charges) Tier 1 ISP Large Content Distributor (e.g., Google ) Large Content Distributor (e.g., Akamai ) IXP Tier 1 ISP Tier-1 ISPs & Content Distributors, interconnect (peer) privately … or at Internet Exchange Points IXPs

Tier-1 ISP: e.g., Sprint … to/from customers peering to/from backbone ….…. … … … POP: point-of-presence

Tier 2 ISP Internet structure: network of networks Tier 1 ISP Large Content Distributor (e.g., Google ) Large Content Distributor (e.g., Akamai ) IXP Tier 1 ISP “tier-2” ISPs: smaller (often regional) ISPs  connect to one or more tier-1 (provider) ISPs  each tier-1 has many tier-2 customer nets  tier 2 pays tier 1 provider  tier-2 nets sometimes peer directly with each other (bypassing tier 1), or at IXP Tier 2 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP

Tier 2 ISP Internet structure: network of networks Tier 1 ISP Large Content Distributor (e.g., Google ) Large Content Distributor (e.g., Akamai ) IXP Tier 1 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP  “Tier-3” ISPs, local ISPs  customer of tier 1 or tier 2 network  last hop (“access”) network (closest to end systems)

Tier 2 ISP Internet structure: network of networks Tier 1 ISP Large Content Distributor (e.g., Google ) Large Content Distributor (e.g., Akamai ) IXP Tier 1 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP Tier 2 ISP  a packet passes through many networks from source host to destination host

Overview r Network access and physical media r Internet structure and ISPs r Delay & loss in packet-switched networks r Protocol layers, service models

How do loss and delay occur? packets queue in router buffers  packet arrival rate to link exceeds output link capacity  packets queue, wait for turn A B packet being transmitted (delay) packets queueing (delay) free (available) buffers: arriving packets dropped (loss) if no free buffers

Four sources of packet delay d proc : nodal processing  check bit errors  determine output link  typically < msec A B propagation transmission nodal processing queueing d queue : queueing delay  time waiting at output link for transmission  depends on congestion level of router d nodal = d proc + d queue + d trans + d prop

Four sources of packet delay A B propagation transmission nodal processing queueing d nodal = d proc + d queue + d trans + d prop d trans : transmission delay:  L: packet length (bits)  R: link bandwidth (bps)  d trans = L/R d prop : propagation delay:  d: length of physical link  s: propagation speed in medium (~2x10 8 m/sec)  d prop = d/s d trans and d prop very different

Caravan analogy  cars “propagate” at 100 km/hr  toll booth takes 12 sec to service car (transmission time)  car~bit; caravan ~ packet  Q: How long until caravan is lined up before 2nd toll booth? toll booth toll booth ten-car caravan 100 km

Caravan analogy  cars “propagate” at 100 km/hr  toll booth takes 12 sec to service car (transmission time)  car~bit; caravan ~ packet  Q: How long until caravan is lined up before 2nd toll booth?  time to “push” entire caravan through toll booth onto highway = 12*10 = 120 sec  time for last car to propagate from 1st to 2nd toll both: 100km/(100km/hr)= 1 hr  A: 62 minutes toll booth toll booth ten-car caravan 100 km

Caravan analogy (more)  cars now “propagate” at 1000 km/hr  toll booth now takes 1 min to service a car  Q: Will cars arrive to 2nd booth before all cars serviced at 1st booth? toll booth toll booth ten-car caravan 100 km

Caravan analogy (more)  cars now “propagate” at 1000 km/hr  toll booth now takes 1 min to service a car  Q: Will cars arrive to 2nd booth before all cars serviced at 1st booth?  A: Yes! After 7 min, 1st car arrives at second booth; three cars still at 1st booth.  1st bit of packet can arrive at 2nd router before packet is fully transmitted at 1st router! toll booth toll booth ten-car caravan 100 km

 R: link bandwidth (bps)  L: packet length (bits)  a: average packet arrival rate traffic intensity = La/R  La/R ~ 0: avg. queueing delay small  La/R -> 1: avg. queueing delay large  La/R > 1: more “work” arriving than can be serviced, average delay infinite! average queueing delay La/R ~ 0 Queueing delay (revisited) La/R -> 1

“Real” Internet delays and routes  What do “real” Internet delay & loss look like?  Traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i:  sends three packets that will reach router i on path towards destination  router i will return packets to sender  sender times interval between transmission and reply. 3 probes

“Real” Internet delays and routes mpl-idf-vln-122.northwestern.edu ( ) ms ms ms 2 lev-mdf-6-vln-54.northwestern.edu ( ) ms ms ms 3 abbt-mdf-1-vln-902.northwestern.edu ( ) ms ms ms 4 abbt-mdf-4-ge northwestern.edu ( ) ms ms ms 5 starlight-lsd6509.northwestern.edu ( ) ms ms ms ( ) ms ms ms ( ) ms ms ms ( ) ms ms ms 9 sl-gw25-stk-1-2.sprintlink.net ( ) ms ms ms 10 sl-bb21-stk-8-1.sprintlink.net ( ) ms ms ms 11 sl-bb21-hk-2-0.sprintlink.net ( ) ms ms ms 12 sl-gw10-hk-14-0.sprintlink.net ( ) ms ms ms 13 sla-cent-3-0.sprintlink.net ( ) ms ms ms ( ) ms ms ms ( ) ms ms ms 16 shnj4.cernet.net ( ) ms ms ms 17 hzsh3.cernet.net ( ) ms ms ms 18 zjufw.zju.edu.cn ( ) ms ms ms 19 * * * 20 * * * 21 ( ) ms ms ms traceroute: zappa.cs.nwu.edu to Three delay measements from Zappa.cs.cs.nwu.edu to 1890mpl-idf-vln-122.northwestern.edu * means no reponse (probe lost, router not replying) trans-oceanic link

Packet loss  queue (aka buffer) preceding link in buffer has finite capacity  packet arriving to full queue dropped (aka lost)  lost packet may be retransmitted by previous node, by source end system, or not at all A B packet being transmitted packet arriving to full buffer is lost buffer (waiting area)

Throughput  throughput: rate (bits/time unit) at which bits transferred between sender/receiver  instantaneous: rate at given point in time  average: rate over longer period of time server, with file of F bits to send to client link capacity R s bits/sec link capacity R c bits/sec server sends bits (fluid) into pipe pipe that can carry fluid at rate R s bits/sec) pipe that can carry fluid at rate R c bits/sec)

Throughput (more)  R s < R c What is average end-end throughput? R s bits/sec R c bits/sec  R s > R c What is average end-end throughput? R s bits/sec R c bits/sec link on end-end path that constrains end-end throughput bottleneck link

Throughput: Internet scenario 10 connections (fairly) share backbone bottleneck link R bits/sec RsRs RsRs RsRs RcRc RcRc RcRc R  per-connection end-end throughput: min(R c,R s,R/10)  in practice: R c or R s is often bottleneck