BJT Common-Emitter Amplifier By: Syahrul Ashikin School of Electrical System Engineering.

Slides:



Advertisements
Similar presentations
TRANSISTOR BJT : DC BIASING.
Advertisements

Transistor Amplifiers
SMALL SIGNAL BJT AMPLIFIER
Voltage-Series Feedback
Cascode Stage. OUTLINE Review of BJT Amplifiers Cascode Stage Reading: Chapter 9.1.
Recall Lecture 13 Biasing of BJT Applications of BJT
Module 2: Part 2 Basic BJT Amplifiers. Learning Objectives After studying this module, the reader should have the ability to: n Explain graphically the.
Electronics Principles & Applications Sixth Edition Chapter 6 Introduction to Small-Signal Amplifiers (student version) ©2003 Glencoe/McGraw-Hill Charles.
Chapter 13 Small-Signal Modeling and Linear Amplification
Recall Last Lecture Biasing of BJT Applications of BJT
Chapter 7 DC Biasing Circuits
Transistor Biasing What is meant by biasing the transistor?
Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled.
BJT Fixed Bias ENGI 242 ELEC 222. January 2004ENGI 242/ELEC 2222 BJT Biasing 1 For Fixed Bias Configuration: Draw Equivalent Input circuit Draw Equivalent.
Part B-3 AMPLIFIERS: Small signal low frequency transistor amplifier circuits: h-parameter representation of a transistor, Analysis of single stage transistor.
BJT Transistor Modeling - I Electronic Circuits First Term Second Year (11CS Batch) 1.
Voltage Divider Bias ENGI 242 ELEC February 2005ENGI 242/ELEC 2222 BJT Biasing 3 For the Voltage Divider Bias Configurations Draw Equivalent Input.
4-1 McGraw-Hill Copyright © 2001 by the McGraw-Hill Companies, Inc. All rights reserved. Chapter Four Basic BJT Amplifiers.
Transistor Amplifiers
Chapter 6:BJT Amplifiers
Voltage Divider Bias ELEC 121. January 2004ELEC 1212 BJT Biasing 3 For the Voltage Divider Bias Configurations Draw Equivalent Input circuit Draw Equivalent.
3-1 McGraw-Hill Copyright © 2001 by the McGraw-Hill Companies, Inc. All rights reserved. Chapter Three The Bipolar Junction Transistor.
Electronics Principles & Applications Fifth Edition Chapter 6 Introduction to Small-Signal Amplifiers ©1999 Glencoe/McGraw-Hill Charles A. Schuler.
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill 6-1 Electronics Principles & Applications Eighth Edition Chapter 6 Introduction.
Section 5.6 Small Signal Model & Analysis
EKT104 ANALOG ELECTRONIC CIRCUITS [LITAR ELEKTRONIK ANALOG] BASIC BJT AMPLIFIER (PART II) DR NIK ADILAH HANIN BINTI ZAHRI
EE 334 Midterm Review. Diode: Why we need to understand diode? The base emitter junction of the BJT behaves as a forward bias diode in amplifying applications.
ANALOG ELECTRONIC CIRCUITS 1
© The McGraw-Hill Companies, Inc McGraw-Hill 1 PRINCIPLES AND APPLICATIONS OF ELECTRICAL ENGINEERING THIRD EDITION G I O R G I O R I Z Z O N I 10.
ANALOG ELECTRONIC CIRCUITS 1
Biasing Biasing: Application of dc voltages to establish a fixed level of current and voltage. BJT Biasing Circuits: Fixed Bias Circuit Fixed Bias with.
BJT amplifier & small-signal concept
Introduction to BJT Amplifier BJT (Review). Still remember about BJT? The emitter current (i E ) is the sum of the collector current (i C ) and the base.
Chapter 1 Introduction to Electronics
1 TRANSISTOR AMPLIFIER CONFIGURATION -BJT Common-Emitter Amplifier- By: Syahrul Ashikin Azmi School of Electrical System Engineering.
Microelectronic Circuit Design, 3E McGraw-Hill Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger.
TRANSISTOR AMPLIFIER CONFIGURATION -BJT Common-Emitter Amplifier-
Recall Last Lecture Introduction to BJT 3 modes of operation Cut-off Active Saturation Active mode operation of NPN.
BJT Amplifier. BJT Amplifiers: Overview Voltage Amplifier In an ideal voltage amplifier, the input impedance is infinite and the output impedance is.
SEM I 2008/09 LECTURE IV: C-E AC ANALYSIS II DMT 231 / 3 ELECTRONICS II Lecture IV AC Analysis II [BJT Common-Emitter Amplifier]
1 LECTURE 1: SMALL-SIGNAL HYBRID-Π EQUIVALENT CIRCUIT OF BIPOLAR TRANSISTOR (BJT) By: Syahrul Ashikin Azmi PPKSE.
SMALL-SIGNAL HYBRID-Π EQUIVALENT CIRCUIT. Content BJT – Small Signal Amplifier BJT complete Hybrid equivalent circuit BJT approximate Hybrid model Objectives.
Microelectronic Circuit Design, 3E McGraw-Hill Chapter 15 Differential Amplifiers and Operational Amplifier Design Microelectronic Circuit Design Richard.
COMMON-COLLECTOR AMPLIFIER
Chapter 3 – Transistor Amplifiers – Part 1 Bipolar Transistor Amplifiers.
Chapter 4 DC Biasing–BJTs. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved. Electronic Devices and.
1 2. Design of BJT amplifiers 2.1 Types of BJT amplifiersTypes of BJT amplifiers 2.2 BJT amplifier biasing designBJT amplifier biasing design 2.3 BJT Optimum.
Load Line & BJT Biasing. DC Biasing To establish a constant dc collector current in the BJT. Biasing is required to operate the transistor in the linear.
BJT Bipolar Junction Transistors (BJT) Presented by D.Satishkumar Asst. Professor, Electrical & Electronics Engineering
Lecture 10:Load Line & BJT Biasing CSE251. DC Biasing To establish a constant dc collector current in the BJT. Biasing is required to operate the transistor.
The Bipolar Junction Transistor
Emitter-Stabilized Bias Circuit Load Line Analysis.
ITM UNIVERSE,VADODARA ELECTRONIC DEVICES & CIRCUITS TOPIC NAME TRANSISTOR BIASING (DC ANALYSIS) PREPARED BY: NAME: Dilsha Dharmajan Electronics & communication.
SUB.TEACHER:- MR.PRAVIN BARAD NAME:-SAGAR KUMBHANI ( ) -VIKRAMSINH JADAV( ) -PARECHA TUSHAR( ) TOPIC:-LINEAR AMPLIFIER(BJT.
Introduction to BJT Amplifier Bipolar Junction Transistor (Review)
LECTURE 1: BASIC BJT AMPLIFIER -AC ANALYSIS-
Recall Last Lecture Biasing of BJT Applications of BJT
Recall Last Lecture Biasing of BJT Three types of biasing
Chapter 1 Introduction to Electronics
Recall Last Lecture Biasing of BJT Three types of biasing
Recall Last Lecture Biasing of BJT Three types of biasing
EKT104 – Analog Electronic Circuits I
Recall Lecture 13 Biasing of BJT Voltage Divider Biasing Circuit.
Chapter 5 Transistor Bias Circuits
Recall Last Lecture Introduction to BJT Amplifier
Lecture’s content Objectives BJT – Small Signal Amplifier
Recall Last Lecture Introduction to BJT Amplifier
Bipolar Junction Transistor
TRANSISTOR AMPLIFIER CONFIGURATION -BJT Common-Emitter Amplifier-
Recall Last Lecture Introduction to BJT Amplifier
Presentation transcript:

BJT Common-Emitter Amplifier By: Syahrul Ashikin School of Electrical System Engineering

Objectives To understand and familiar with dc analysis of bipolar transistor circuits. To study common-emitter amplifier in term of ac analysis and familiar with general characteristic of this circuit.

Basic common-emitter circuit Voltage divider biasing Coupling capacitor -> dc isolation between amplifier and signal source Emitter at ground -> common emitter

Rules in dc analysis Replacing all capacitors by open circuit. Replacing all inductors by short circuit. Replacing ac voltage source by short circuit or ground connection. Replacing ac current source by open circuit.

Dc analysis The circuit can be analyzed by forming a Thevenin equivalent circuit. C C acts as an open circuit to dc.

Thevenin circuit analysis We know that, Thevenin resistance, R TH is: Thevenin voltage, V TH is: Apply KVL around B-E loop; The collector current, I CQ is then:

Cont. Thevenin circuit analysis Apply KVL to collector-emitter loop; Thus, Q-point of the amplifier circuit is the coordinate between I CQ and V CEQ.

Rules in ac analysis Replacing all capacitors by short circuits Replacing all inductors by open circuits Replacing dc voltage sources by ground connections Replacing dc current sources by open circuits

AC analysis -small-signal equivalent circuit- Inside the transistor

Small-signal hybrid- π parameters Small-signal input resistance, r π Transconductance, g m Small-signal output resistance, r o Control voltage, V π Output voltage, V o Input resistance, R i

Small-signal hybrid- π parameters Output resistance, R o Voltage gain, A v

Example 1 Given V CC =12V,R S =0.5kΩ, R 1 =93.7kΩ, R 2 =6.3kΩ, R C =6kΩ, β=100, V BE(on) =0.7V and V A =100V. Determine small-signal voltage gain, input resistance and output resistance of the circuit.

Solution Example 1 1 st step: DC solution Find Q-point values. ICQ = 0.95mA VCEQ=6.31V.

Cont Solution Example 1 2 nd step: AC solution Small-signal hybrid-π parameters are:

Cont Solution Example 1 Small-signal voltage gain is: Input resistance, Ri is:

Cont Solution Example 1 O/p resistance, R o -> by setting independent source V s = 0 -->no excitation to input portion, V π =0, so g m V π =0 (open cct).

Common-emitter circuit with emitter resistor Why we need to add emitter resistor, R E in the circuit design? Without R E, when β increases or decreases -> I CQ and V CEQ also vary, thus Q-point will be shifted and makes the circuit unstable. By adding R E, there will be not much shift in Q- point is stabilized even with variation of β. Moreover, the voltage gain is less dependent on transistor current gain in ac analysis.

Common-emitter circuit with emitter resistor Emitter resistor

Thevenin circuit analysis Apply KVL around B-E loop,

Thevenin circuit analysis We will get collector current as: Apply KVL around C-E loop to find V CEQ,

Ac analysis -small-signal equivalent circuit-

Small-signal hybrid-π parameters The ac output voltage is: (if we consider equivalent circuit with current gain β) Input voltage equation: Input resistance looking into the base of BJT, Rib: Input resistance to the amplifier is:

Small-signal hybrid-π parameters By voltage divider, we get relate Vin and Vs: Small-signal voltage gain is then: If R i >>R S and if (1+β)R E >> r π, voltage gain is: Exact value Approximate value

Example 2 Given V CC =10V, R 1 =56kΩ, R 2 =12.2kΩ, R C =2kΩ, R E =0.4kΩ, RS=0.5kΩ, V BE(on) =0.7V, β=100 and V A = ∞. a) Sketch Thevenin equivalent circuit. b) Determine Q-points. c) Sketch and label small-signal equivalent hybrid-π circuit. d) Find small-signal voltage gain, A V.

Common-emitter circuit with positive and negative voltage biasing Biasing with dual supplies in desirable in some applications because: Eliminate coupling capacitor Allow dc input voltages as input signals.

Example 3 A simple transistor circuit biased with both +ve and –ve dc voltages is shown in figure below. Given β=100 and V BE(on) =0.7V. Calculate I EQ, I CQ and V CEQ.

Solution Example 3 For dc analysis, set v s =0 so that base terminal is at ground potential. KVL around B-E loop, So, emitter current: Collector current:

Cont solution example 3 Apply KVL around C-E loop yields Rearrange the equation to find VCEQ;

Example 4 Let β=120, R1=175kΩ, R2=250kΩ, RC=10kΩ, RE=20kΩ and VBE(on)=0.7V. For the given circuit, i) Find RTH, VTH and Q-points. ii) Sketch dc load line

Solution Example 4 1 st : Sketch Thevenin equivalent circuit to find R TH and V TH. R TH = 103kΩ & V TH = 1.6V 2 nd : Apply KVL around B-E loop to find equation for I BQ. Then, find I CQ and I EQ. IBQ = 3.92μA ICQ = 0.471mA & IEQ = 0.474mA 3 rd : Apply KVL around C-E loop to find equation for V CEQ. V CEQ = 3.8V 4 th : Sketch dc load line and indicate the Q- points. Find I C(max) at y-axis and V CE(cutoff) = V CC =V + -V - =18V at x-axis.