ANATOMY AND PHYSIOLOGY OF THE EAR

Slides:



Advertisements
Similar presentations
THE EAR Outer Ear Middle Ear Inner Ear. 10 ) Describe structurec and functions in the outer, middle and inner ear.
Advertisements

BASIC EAR ANATOMY OR WHATS IN AN EAR. BASIC EAR ANATOMY EXPECTED OUTCOMES EXPECTED OUTCOMES  TO UNDERSTAND THE HEARING MECHANISM  TO BE ABLE TO IDENTIFY.
Chapter 8 – Special Senses
Hearing and Equilibrium
Have you heard the news??? It’s ear time!!. Trivia Question What are the smallest bones in the body? OssiclesOssicles These bones are fully developed.
Sensory System Ear: Sound & Balance.
ELAINE N. MARIEB EIGHTH EDITION 8 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
Sensory systems Chapter 16.
S 319 < Auditory system >
Ears, Hearing.
9.6 Hearing and Equilibrium
Warm up 03/06/2012 The oily secretions that lubricate the eye are produced by the: A) ceruminous glands B) lacrimal glands C) meibomian glands D) apocrine.
Chapter 8 Special Senses: Hearing & Equilibrium
Special Sensory Reception
Human Biology Sylvia S. Mader Michael Windelspecht
SENSE OF HEARING EAR. Ear Consists of 3 parts –External ear Consists of pinna, external auditory meatus, and tympanum Transmits airborne sound waves to.
Sense of Hearing and Equilibrium
Sense of Hearing External Ear Auricle (pinna) - outer ear External Auditory Meatus.
© 2011 The McGraw-Hill Companies, Inc. Instructor name Class Title, Term/Semester, Year Institution Introductory Psychology Concepts Hearing.
The Ear.
Hearing and Equilibrium
ANATOMY AND PHYSIOLOGY OF THE EAR
Special Senses Lecture Hearing. Our ears actually serve two functions: 1)Allow us to hear 2)Maintain balance and equilibrium Hearing and balance work.
9.6 Hearing and Equilibrium Pages The Ear Two separate functions: hearing and equilibrium Cilia: tiny hair cells that respond to mechanical stimuli.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings  Hearing – allows us to detect and interpret sound waves  Equilibrium – inform.
Sense of Hearing and Equilibrium. 3 Parts Sense of Hearing o Made up of: Outer ear Middle ear Inner ear Ear also functions as sense of equilibrium.
Hearing What’s that you say? Anatomy is your favorite class? Not surprising.
The Ears and Hearing.
IB Biology Neurology Unit Option E
Label the Ear Anatomy Learning the Parts of the Ear.
The Ear Change the graphics to symbolize different functions of the ear that are brought up on the next slide.
Special Senses Hearing. Ear is a very sensitive structure. – The sensory receptors convert vibrations 1,000 times faster than the photoreceptors of the.
CHAPTER 15 Special Senses EAR “Oto - Auris”. EAR HEARING (“Audi”) – sense that converts vibrations of air -> nerve impulses that are interpreted by the.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings H UMAN P HYSIOLOGY Sensory Physiology_hearing.
March 25 th, 2010 Objective: Review the workings of the nose, tongue, and ear. –Coloring –Notes Do Now – get markers and start coloring!
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Special Senses  Objective 5  Identify the divisions of the ear, their structures,
SPECIAL SENSES 12.4 HEARING. SPECIAL SENSES: HEARING Structures of the Ear –Outer Ear Auricle: visible part of the ear –Collects sound waves and directs.
52 The Sense of Hearing Dr. A.R. Jamshidi Fard 2011.
Anatomy Physiology and Disorders of the Hearing
Physiology of hearing. Vestibular analyzer
THE EAR is a sensory organ responsible for both hearing and maintenance of balance composed of three sections: the outer, middle and inner ear.
Special Senses- The Ear
The Ear. Functions of the Ear There are three parts to the Ear:
Chapter 4 Sensation and Perception. The Ear Audition = hearing Audition = hearing Sounds = mechanical energy typically caused by vibrating objects Sounds.
Chapter 7: The Sensory Systems
The Human Ear and Hearing
The Ear Hearing and Balance. The Ear: Hearing and Balance The three parts of the ear are the inner, outer, and middle ear The outer and middle ear are.
Biology Department 1. 2  The ear is the organ of hearing and, in mammals, balance.  In mammals, the ear is usually described as having three parts:
When a sound is made, the air around the sound vibrates. Hearing starts when some of the sound waves go into the ear.
Unit 5: Senses Structure of the Ear. Major functions of the ear 1.Hearing 2. Balance/Equilibrium *Sound waves and fluid movement act on receptors called.
1. Auricle/Pinnae – funnel-like structure that helps collect sound waves 2. External Acoustic Meatus (EAM)/external auditory canal – s – shaped tube that.
Pinna The Pinna is the shell like part of the ear made of cartilage and skin Outer Ear- cups sound and directs it to the external auditory canal (ear.
Anatomy of the Ear Three Main Sections
ANATOMY OF THE EAR Chas, Tate, Rebekah, Rachel W., and Rachel B.
Trina Redford, Industrial Hygienist National Naval Medical Center
Lab 11 : Human Ear Anatomy Biology Department.
The Ear: Hearing and Balance
ANATOMY THE EAR Dr. J.K. GERALD, (MD, MSc.).
Which cranial nerves are associated with hearing?
8 Special Senses.
Special Senses The Ear.
Senses: Hearing and Equilibrium
The Ears and Hearing.
Section 14.3 Hearing and Equilibrium
Journal#5: What would happen if you were born without cones
ANATOMY AND PHYSIOLOGY OF THE EAR (HEARING)
The Ears: Hearing and Balance
ANATOMY AND PHYSIOLOGY OF THE EAR
Ear Today Gone Tomorrow
The Ear: Hearing and Balance
Presentation transcript:

ANATOMY AND PHYSIOLOGY OF THE EAR

Main Components of the Hearing Mechanism Outer Ear Middle Ear Inner Ear Central Auditory Nervous System

Structures of the Outer Ear Auricle (Pinna) Collects sound Helps in sound localization Most efficient in directing high frequency sounds to the eardrum

External Auditory Canal Approximately 1¼ inch in length “S” shaped Lined with cerumen glands Outer 1/3rd cartilage; inner 2/3rds mastoid bone Increases sound pressure at the tympanic membrane by as much as 5-6 dB (due to acoustic resonance)

Mastoid Process Bony ridge behind the auricle Provides support to the external ear and posterior wall of the middle ear cavity

Tympanic Membrane Thin membrane Forms boundary between outer and middle ear Vibrates in response to sound Changes acoustical energy into mechanical energy

The Ossicular Chain A: Malleus B: Incus C: Stapes Ossicles are smallest bones in the body Act as a lever system Footplate of stapes enters oval window of the cochlea

Eustachian Tube Lined with mucous membrane; connects middle ear to back of the throat (nasopharynx) Equalizes air pressure Normally closed except during yawning or swallowing Not a part of the hearing process

Stapedius Muscle Connects the stapes to the middle ear wall Contracts in response to loud sounds; known as the Acoustic Reflex

Structures of the Inner Ear Cochlea - Snail-shaped organ with a series of fluid-filled tunnels; converts mechanical energy into electrical energy

Structures of the Inner Ear (Cont.) Oval Window – located at the footplate of the stapes; when the footplate vibrates, the cochlear fluid is set into motion Round Window – functions as the pressure relief port for the fluid set into motion initially by the movement of the stapes in the oval window

Organ of Corti The end organ of hearing; contains stereocilia and hair cells.

Hair Cells Frequency-specific High pitch sounds = base of cochlea Low pitch sounds = apex of cochlea When the basilar membrane moves, a shearing action between the tectorial membrane and the organ of Corti causes hair cells to bend

Vestibular System Consists of three semi-circular canals Shares fluid with the cochlea Controls balance No part in hearing process

Central Auditory System 8th Cranial Nerve or “Auditory Nerve” carries signals from cochlea to brain Fibers of the auditory nerve are present in the hair cells of the inner ear Auditory Cortex: Temporal lobe of the brain where sound is perceived and analyzed

How Sound Travels Through The Ear... Acoustic energy, in the form of sound waves, is channeled into the ear canal by the pinna. Sound waves strike the tympanic membrane, causing it to vibrate like a drum, and changing it into mechanical energy. The malleus, which is attached to the tympanic membrane, starts the ossicles into motion. (The middle ear components mechanically amplify sound). The stapes moves in and out of the oval window of the cochlea creating a fluid motion. The fluid movement within the cochlea causes membranes in the Organ of Corti to shear against the hair cells. This creates an electrical signal which is sent via the Auditory Nerve to the brain, where sound is interpreted!

QUESTIONS?