SUSTAINABLE AGRICULTURE THROUGH SOIL CONSERVATION

Slides:



Advertisements
Similar presentations
How is Food Produced?.
Advertisements

SOIL EROSION AND DEGRADATION  Soil erosion lowers soil fertility and can overload nearby bodies of water with eroded sediment. Sheet erosion: surface.
Agriculture & Aquaculture APES Final Review. Where our food comes from… Croplands (77%) Rangelands, pastures & feedlots (29%) Aquaculture (7%) There are.
Desertification: Degrading Drylands About one-third of the world’s land has lost some of its productivity because of drought and human activities that.
Less permeable clay layer
Chapter 11 Feeding the World.
Pesticides and Other Environmental Impacts of Agriculture.
Ch 3 and 13 Soils Part 2. Global Outlook: Soil Erosion Soil is eroding faster than it is forming on more than one-third of the world’s cropland. Figure.
Chapter 12 Alec Scaffidi.  Food Security- Having enough nutritious food to have a healthy life  Food Insecurity- Living with chronic hunger and poor.
Chapter 11: Feeding the World
12-3 What Environmental Problems Arise from Food Production?
Soil Erosion and Degradation. PA Standards C: Renewable and Nonrenewable Resources B: Agriculture and Society “The nation that destroys.
Food and Agriculture.
By Ali Brooks and Sarah Anderson.  Agro forestry- crops and trees are grown together.  Alley cropping- see agro forestry  Aquaculture- raising and.
Food and Agriculture Chapter 15.
Soil and Agriculture Review
Food Resources and Soil Asim Zia Introduction to Environmental Issues EnvS 001, Spring 2007 Department of Environmental Studies San Jose State University.
Solutions to Environmental Problems Associated with Food Production
You need your notebooks and be finishing up your comic strip.
18 Food Resources.
3.5 Food Resources.
Chapter 13 Food, Soil Conservation, and Pest Management.
FEEDING THE WORLD. HUMAN NUTRITION ~24,000 starve each day; 8.8 million each year ~1 billion lack access to adequate food supply Population keeps growing.
LEQ- How has agriculture evolved over the years? Warm-Up- In your journal respond to the following: What do you know about industrialized agriculture?
Food, Soil Conservation and Pest Management
Food Resources G. Tyler Miller’s Living in the Environment 13 th Edition Chapter 13 G. Tyler Miller’s Living in the Environment 13 th Edition Chapter 13.
Case Study: Soil Erosion in the U.S. – Some Hopeful Signs  Soil erodes faster than it forms on most U.S. cropland, but since 1985, has been cut by about.
Food, Soil Conservation, and Pest Management
 Plan a banquet for the class?  Main Dish  Snack foods  Beverages  Forks  Paper Plates  Cups  Desserts.
Soil Not just dirt!. Soil… is a thin surface layer of the Earth’s crust. is affected by agents such as weather, wind, water, and organisms. is (approximately)
Do Now: Identify and discuss 2 factors that may limit food production in the future.
3.5 Food Resources.
Food Resources. Food in the World 30,000 plant species with parts people can eat 15 plants and 8 animals supply 90% of our food Wheat, rice, and corn.
Agriculture: Part 2 Increasing food production. © Brooks/Cole Publishing Company / ITP Green Revolutions: increasing crop yields per unit area First Green.
Chapter 9 The Production and Distribution of Food.
APES Food Resources “There are two spiritual dangers in not owning a farm. One is the danger of supposing that breakfast comes from a grocery, and the.
SOIL CONSERVATION Chapter 13. Conservation tillage farming Reduces erosion Saves fuel & money Reduces impaction, so soil holds more water 1998-used on.
 Negative impact on soil, air, water, and biodiversity resources  Humans and human health also negatively impacted  Negative aspects cost US $
Challenges of Producing More Crop and Livestock o Domestication and Genetic Diversity Domestication of crops and livestock causes a loss of genetic diversity.
Food Resources Topic 3 The Soil System and Food Production Students will be able to: -to discuss the links that exist between social systems and food production.
Food Resources. One of six people in developing countries cannot grow or buy the food they need. One of six people in developing countries cannot grow.
Genetically modified crops and foods have advantages and disadvantages.
Chapter 11 Feeding the World. Food Production Major food sources: croplands, rangelands, and oceans Large increase in food production since 1950 Need.
Food Resources. One of six people in developing countries cannot grow or buy the food they need. One of six people in developing countries cannot grow.
Agriculture Unit Notes. Food and Nutrition Foods humans eat are composed of several major types of biological molecules necessary to maintain health :
Food Production. How is food produced? Industrial Agriculture Traditional Agriculture.
Environmental Problems With Food Production Ch. 12.
THE GENE REVOLUTION  The winged bean, a GMF, could be grown to help reduce malnutrition and the use of large amounts of inorganic fertilizers. Figure.
Food Production and Agriculture. How to Feed a Hungry Planet 1. Three systems provide most of the world’s food & uses 40% of the world’s food a. Cropland:
Food – a resource. Why is food important? 1)Source of energy 2)Source of materials for building new cells & structures **malnourishment can lead to other.
Solutions to Environmental Problems Associated with Food Production Monday, February 29 th, 2016.
Food and Soil Resources G. Tyler Miller’s Living in the Environment 14 th Edition Chapter 14 G. Tyler Miller’s Living in the Environment 14 th Edition.
Chapter 13 Food, Soil Conservation, and Pest Management.
LEQ- How has agriculture evolved over the years?
Week eight Food Security.
Land Management.
The Green Revolution Objective:.
Food and Soil Resources
Food Resources and Pesticides
Food Resources.
Solutions to Environmental Problems Associated with Food Production
Farming Methods Conventional agriculture- industrial agriculture where labor is reduced and machinery is used. Traditional farming- still used in the developing.
Food and Soil Resources
Food, Soil Conservation, and Pest Management
Agriculture & Aquaculture
Bellringer: (packet page 7)
Food and Agriculture.
Issues and Impacts of Agriculture
Food, Soil, and Pest Management
Soil Agriculture Tillage
Presentation transcript:

SUSTAINABLE AGRICULTURE THROUGH SOIL CONSERVATION Modern farm machinery can plant crops without disturbing soil (no-till and minimum tillage. Conservation-tillage farming: Increases crop yield. Raises soil carbon content. Lowers water use. Lowers pesticides. Uses less tractor fuel.

Contour Farming –sloping your growing crops, etc. You run terraces parallel to the ground to stop soil from running down a steep slope. Plowing and planting crops in rows across, rather than up and down, the sloped contour of the land.

Terracing – (what you use for contour farming Terracing – (what you use for contour farming.) Dirt goes up to hold the dirt in place. Broad, nearly level terraces that run across the land contour. Helps to retain water for crops at each level and reduce soil erosion by controlling runoff.

SUSTAINABLE AGRICULTURE THROUGH SOIL CONSERVATION Terracing, contour planting, strip cropping, alley cropping, and windbreaks can reduce soil erosion. Figure 13-16

Strip Cropping – a row crop such as corn alternates in strips with another crop that completely covers the soil, reducing erosion. It catches and reduces water runoff and helps prevent the spread of pests and plant diseases.

Cover Cropping (alley cropping) – several crops are planted together in strips or alleys between trees and shrubs that can provide shade (which reduces water loss by evaporation) and helps to retain and slowly release soil moisture.

Irrigation Techniques Conventional center-pivot irrigation- allows 80% of the water input to reach crops Gravity-flow irrigation- Valves that send water down irrigation ditches. Drip irrigation- Can raise water efficiency to 90-95% and reduce water use by 37-70%. Floodplain irrigation- allowing the natural floods to irrigate the crops. Soils in flood zones tend to be nutrient rich and fertile.

Hydroponics: Definition Hydroponics are growing plants in fertilized water. Method of suspending plants in water and the solutions involved. Ex. cranberries are grown this way.

Costs of Hydroponics: It is labor-intensive and expensive. Benefits: You can control the environment & grow plants where there is no soil; NASA is looking into this.

THE GREEN REVOLUTION AND ITS ENVIRONMENTAL IMPACT Since 1950, high-input agriculture has produced more crops per unit of land. In 1967, fast growing dwarf varieties of rice and wheat were developed for tropics and subtropics. Figure 13-17

THE GREEN REVOLUTION AND ITS ENVIRONMENTAL IMPACT Lack of water, high costs for small farmers, and physical limits to increasing crop yields hinder expansion of the green revolution. Since 1978 the amount of irrigated land per person has declined due to: Depletion of underground water supplies. Inefficient irrigation methods. Salt build-up. Cost of irrigating crops.

THE GREEN REVOLUTION AND ITS ENVIRONMENTAL IMPACT Modern agriculture has a greater harmful environmental impact than any human activity. Loss of a variety of genetically different crop and livestock strains might limit raw material needed for future green and gene revolutions. In the U.S., 97% of the food plant varieties available in the 1940 no longer exist in large quantities.

Biodiversity Loss Soil Air Pollution Human Health Water Loss and degradation of grasslands, forests, and wetlands Erosion Water waste Greenhouse gas emissions from fossil fuel use Nitrates in drinking water Loss of fertility Aquifer depletion Salinization Increased runoff and flooding from cleared land Pesticide residues in drinking water, food, and air Other air pollutants from fossil fuel use Waterlogging Fish kills from pesticide runoff Desertification Sediment pollution from erosion Contamination of drinking and swimming water with disease organisms from livestock wastes Greenhouse gas emissions of nitrous oxide from use of inorganic fertilizers Figure 13.18 Natural capital degradation: major harmful environmental effects of food production. According to a 2002 study by the United Nations, nearly 30% of the world’s cropland has been degraded to some degree by soil erosion, salt buildup, and chemical pollution, and 17% has been seriously degraded. QUESTION: Which item in each of these categories do you think is the most harmful? Fish kills from pesticide runoff Killing wild predators to protect livestock Surface and groundwater pollution from pesticides and fertilizers Loss of genetic diversity of wild crop strains replaced by monoculture strains Belching of the greenhouse gas methane by cattle Bacterial contamination of meat Overfertilization of lakes and rivers from runoff of fertilizers, livestock wastes, and food processing wastes Pollution from pesticide sprays Fig. 13-18, p. 285

THE GENE REVOLUTION To increase crop yields, we can mix the genes of similar types of organisms and mix the genes of different organisms. Artificial selection has been used for centuries to develop genetically improved varieties of crops. Genetic engineering develops improved strains at an exponential pace compared to artificial selection. Controversy has arisen over the use of genetically modified food (GMF).

Mixing Genes Genetic engineering involves splicing a gene from one species and transplanting the DNA into another species. Figure 13-19

Trade-Offs Genetically Modified Crops and Foods Projected Advantages Projected Disadvantages Need less fertilizer Irreversible and unpredictable genetic and ecological effects Need less water More resistant to insects, disease, frost, and drought Harmful toxins in food from possible plant cell mutations Grow faster New allergens in food Lower nutrition Can grow in slightly salty soils Increased development of pesticide-resistant insects and plant diseases Less spoilage Figure 13.19 Trade-offs: projected advantages and disadvantages of genetically modified crops and foods. QUESTION: Which two advantages and and which two disadvantages do you think are the most important? Better flavor Can create herbicide-resistant weeds Need less pesticides Tolerate higher levels of herbicides Can harm beneficial insects Higher yields Lower genetic diversity Fig. 13-19, p. 287

PRODUCING MORE MEAT About half of the world’s meat is produced by livestock grazing on grass. The other half is produced under factory-like conditions (feedlots). Densely packed livestock are fed grain or fish meal. Eating more chicken and farm-raised fish and less beef and pork reduces harmful environmental impacts of meat production.

Increased meat production Trade-Offs Animal Feedlots Advantages Disadvantages Increased meat production Need large inputs of grain, fish meal, water, and fossil fuels Higher profits Concentrate animal wastes that can pollute water Less land use Reduced overgrazing Figure 13.21 Trade-offs: advantages and disadvantages of animal feedlots. QUESTION: Which single advantage and which single disadvantage do you think are the most important? Reduced soil erosion Antibiotics can increase genetic resistance to microbes in humans Help protect biodiversity Fig. 13-21, p. 289

How Many People can the World Support? Food Production and Population The number of people the world can support depends mostly on their per capita consumption of grain and meat and how many children couples have. Research has shown that those living very low on the food chain or very high on the food chain do not live as long as those that live somewhere in between.

PRODUCING MORE MEAT Efficiency of converting grain into animal protein. Figure 13-22

CATCHING AND RAISING MORE FISH AND SHELLFISH After spectacular increases, the world’s total and per capita marine and freshwater fish and shellfish catches have leveled off. Figure 13-23

CATCHING AND RAISING MORE FISH AND SHELLFISH Government subsidies given to the fishing industry are a major cause of overfishing. Global fishing industry spends about $25 billion per year more than its catch is worth. Without subsidies many fishing fleets would have to go out of business. Subsidies allow excess fishing with some keeping their jobs longer with making less money.

Aquaculture: Aquatic Feedlots Raising large numbers of fish and shellfish in ponds and cages is world’s fastest growing type of food production. Fish farming involves cultivating fish in a controlled environment and harvesting them in captivity. Fish ranching involves holding anadromous species that live part of their lives in freshwater and part in saltwater. Fish are held for the first few years, released, and then harvested when they return to spawn.

Trade-Offs Aquaculture Advantages Disadvantages High efficiency Needs large inputs of land, feed, and water High yield in small volume of water Large waste output Destroys mangrove forests and estuaries Can reduce overharvesting of conventional fisheries Uses grain to feed some species Figure 13.24 Trade-offs: advantages and disadvantages of aquaculture. QUESTION: Which two advantages and which two disadvantages do you think are the most important? Low fuel use Dense populations vulnerable to disease High profits Tanks too contaminated to use after about 5 years Profits not tied to price of oil Fig. 13-24, p. 292

Solutions More Sustainable Aquaculture • Use less fishmeal feed to reduce depletion of other fish • Improve management of aquaculture wastes • Reduce escape of aquaculture species into the wild • Restrict location of fish farms to reduce loss of mangrove forests and estuaries Figure 13.25 Solutions: ways to make aquaculture more sustainable and reduce its harmful environmental effects. QUESTION: Which two of these solutions do you think are the most important? • Farm some aquaculture species in deeply submerged cages to protect them from wave action and predators and allow dilution of wastes into the ocean • Certify sustainable forms of aquaculture Fig. 13-25, p. 293

SOLUTIONS: MOVING TOWARD GLOBAL FOOD SECURITY People in urban areas could save money by growing more of their food. Urban gardens provide about 15% of the world’s food supply. Up to 90% of the world’s food is wasted. Figure 13-26

Solutions: Steps Toward More Sustainable Food Production We can increase food security by slowing populations growth, sharply reducing poverty, and slowing environmental degradation of the world’s soils and croplands.