2005/3/271 3HF 蛍光体を添加した Sci-Fi の基礎 開発 阪大理 (A) 青木正治 有本靖 久野良孝 栗山靖敏 佐藤朗 田窪洋介 中丘末広 中原健吾 堀越篤 松島朋宏 吉田誠 高エ研 (B) 五十嵐洋一 横井武一郎 吉村浩司 FNAL (C) Alan Bross Imperial.

Slides:



Advertisements
Similar presentations
MICE Collaboration MTG IIT – Feb 2002 The Fiber Tracker Option for MICE Spectrometers The D0 Central Fiber Tracker – Experience and Implications for MICE.
Advertisements

MEG 実験 液体キセノンカロリメータ におけるエネルギー分解能の追究 東大素粒子センター 金子大輔 他 MEG コラボレーション.
MICE the Muon Ionization Cooling Experiment Emilio Radicioni, INFN EPS-HEP Aachen 2003.
Status of MICE Tracker System H. Sakamoto, Osaka University (on behalf of the MICE Collaboration) International Muon Ionization Cooling Experiment (MICE)
KEK Test Beam Phase II Plan Makoto Yoshida (Osaka Univ.) MICE FT Daresbury 2005/8/30.
KEK beam test H. Sakamoto. Purpose To optimize a concentration of the second dopant for scintillating fibers KEK beam test to study light yields for various.
1 Scintillating Fibre Cosmic Ray Test Results Malcolm Ellis Imperial College London Monday 29 th March 2004.
Status of the MICE SciFi Simulation Edward McKigney Imperial College London.
International Muon Ionization Cooling Experiment Edward McKigney Imperial College RAL March 25, 2002 Physics Motivation and Cooling Introduction.
CHIPP Sept 2005Jean-Sébastien GraulichSlide 1 What is MICE  Muon Ionisation Cooling Experiment  What is Ionisation Cooling ? Cooling = Reduction of Beam.
Prototype Performance in D0 test stand M.Yoshida (Osaka Univ.)
KEK Test Results / Plans Akira SATO Osaka University, Japan.
KEK Analysis Report Makoto Yoshida Osaka Univ. 2006/06/10 MICE CM15.
Kirk McDonald Monday, 28th May Report of the International Working Group on Muon Beamlines Bruno Autin, Roberto Cappi, Rob Edgecock, Kirk McDonald,
MICE Video MTG 9/25/2002 MICE Fiber Tracker Design Update Requirements and Proposed Detector Implementations A. Bross Fermilab.
MICE: The International Muon Ionization Cooling Experiment Diagnostic Systems Tracker Cherenkov Detector Time of Flight Counters Calorimeter Terry Hart.
1 KEK Beam Test Analysis Hideyuki Sakamoto 15 th MICE Collaboration Meeting 10 st June,2006.
Prototype Performance in D0 test stand & fiber intrinsic performance with KEK test beam M.Yoshida (Osaka Univ.) Osaka.
1 G4MICE Analysis of KEK Test Beam Aron Fish Malcolm Ellis CM15 10th June 2006.
1 Status of the MICE SciFi Tracker Malcolm Ellis Imperial College London Tuesday 9 th March 2004.
DPNC Sept 2007Jean-Sébastien Graulich MICE The international Muon Ionization Cooling Experiment o o Introduction o o Beam Line o o Cooling Channel o o.
MANX meeting 15 July 2008 Alain Blondel 1   MICE The International Muon Ionization Cooling Experiment MICE in 2011.
Emittance measurement: ID muons with time-of-flight Measure x,y and t at TOF0, TOF1 Use momentum-dependent transfer matrices iteratively to determine trace.
Emittance measurement: ID muons with time-of-flight Measure x,y and t at TOF0, TOF1 Use momentum-dependent transfer matrices to map  path Assume straight.
Measurement of 'intrinsic' properties of scintillating fibers H. Sakamoto Osaka University, Japan A.Sato M. Yoshida Y. Kuno Osaka Univ. K. Yoshimura KEK.
Particle Production in the MICE Beam Line Particle Accelerator Conference, May 2009, Vancouver, Canada Particle Production in the MICE Beam Line Jean-Sebastien.
MICE: The International Muon Ionization Cooling Experiment Ulisse Bravar University of Oxford ICHEP ‘04 1 MICE: The International Muon Ionization Cooling.
Results from Step I of MICE D Adey 2013 International Workshop on Neutrino Factories, Super-beams and Beta- beams Working Group 3 – Accelerator Topics.
1 SciFi Results and Comparison Malcolm Ellis, for the MICE Scintillating Fibre Group Abingdon, 31 st October 2003.
1 MICE Tracking Detectors Malcolm Ellis NFMCC Meeting 12 th March 2006.
Status of E391a Search for K L    decay G.Y.Lim IPNS, 32nd ICHEP 19 th August 2004 Beijing.
THE FORWARD PROTON DETECTOR AT DZERO Gilvan Alves Lafex/CBPF 1) MOTIVATION 2) DETECTOR OPTIONS 3) FPD R&D 4) OUTLOOK Lishep 98 Lafex/CBPF Feb 17, 1998.
MICE : the Muon Ionization Cooling Experiment M. Yoshida (Osaka Univ.) for the MICE Collaboration Osaka - Overview and Status -
K2K 実験 SciBar 前置ニュートリノ検出器 久野研 田窪 洋介 読み出しシステムと時間情報の較正.
ICHEP 2012 Melbourne, 7 July 2012 Paul Soler on behalf of the MICE Collaboration The MICE Beam Line Instrumentation (Trackers and PID) for precise Emittance.
Electromagnetic Calorimeter for the CLAS12 Forward Detector S. Stepanyan (JLAB) Collaborating institutions: Yerevan Physics Institute (Armenia) James Madison.
Fiber Tracker Update Edward McKigney Imperial College July 3 rd, 2002.
Start Counter Collaboration Meeting September 2004 W. Boeglin FIU.
TOP counter overview and issues K. Inami (Nagoya university) 2008/7/3-4 2 nd open meeting for proto-collaboration - Overview - Design - Performance - Prototype.
Takashi Matsushita Imperial College T. Matsushita 1 MICE Status Excerpt from talks at MuTAC review:
Development of TOP counter for Super B factory K. Inami (Nagoya university) 2007/10/ th International Workshop on Ring Imaging Cherenkov Counters.
MCTF 8/17/06 A. Bross MTA Activities and Plans MCTF August 17, 2006 A. Bross.
MICE at STFC-RAL The International Muon Ionization Cooling Experiment -- Design, engineer and build a section of cooling channel capable of giving the.
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
MICE Phase 1 Koji Yoshimura KEK June
KEK beam test in May 2005 Makoto Yoshida Osaka Univ. MICE Frascati June 27 th, 2005.
KEK Test Beam Phase I (May 2005) Makoto Yoshida Osaka Univ. MICE-FT Daresbury Aug 30th, 2005.
MICE FAC open session Alain Blondel 1   MICE The International Muon Ionization Cooling Experiment.
Giovanni Onorato Fermilab University of Rome “Guglielmo Marconi” INFN Lecce Mu2e general presentation.
- MICE - The Muon Ionization Cooling Experiment Jean-Sebastien Graulich, Univ. Genève o Introduction: Aims And Concept o Design o Infrastructure: Hall,
1 Alan Bross AEC March 31, 2008 MuCool RF Program Muon Cooling R&D Alan Bross.
LHCf Detectors Sampling Calorimeter W 44 r.l, 1.6λ I Scintilator x 16 Layers Position Detector Scifi x 4 (Arm#1) Scilicon Tracker x 4(Arm#2) Detector size.
T585 analysis status /2/2 HIDEYUKI SAKAMOTO Contents On small light yield problem checked by Aron’s information Tracking status Transverse and Longitudinal.
Summary of final results from MICE note: “ MICE Scintillating Fibre Tracker Prototype - First progress report - ” M.Yoshida (Osaka Univ.) for the SciFi.
ch/~bdl/lepc/lepc.ppt 1 MICE Status and Plans Rikard Sandström Université de Geneve International Scoping Study CERN,
SPring-8 レーザー電子光 ビームラインでの タギング検出器の性能評価 核物理研究センター 三部 勉 LEPS collaboration 日本物理学会 近畿大学 1.レーザー電子光 2.タギング検出器 3.実験セットアップ 4.エネルギー分解能 5.検出効率とバックグラウンドレート.
CLAS12 Pre-shower H. Voskanyan (YerPhI)  R&D: Test measurements  Prototype CLAS Collaboration, CLAS12 TWG Meeting February 28, 2007, JLAB.
CHIPP Oct 2007Jean-Sébastien Graulich Status of MICE Jean-Sebastien Graulich, Univ. Genève o o Introduction o o Beam Line o o Technical Design o o PID.
T585 analysis status 2005/12/02 HIDEYUKI SAKAMOTO This analysis was done by RUN# (+1.0 GeV/c normal beam run) For the problem of small light yield.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
Monte Carlo simulation of the particle identification (PID) system of the Muon Ionization Cooling Experiment (MICE) Mice is mainly an accelerator physics.
K. Long, 28 June, 2016 Introduction to MICE — and the role of the Hydrogen Delivery System.
20 April 2007MICE Tracker Phone Meeting1 Analysis of cosmic/self-triggerd data of station 5 Hideyuki Sakamoto MICE Tracker Phone Meeting 20 th April 2007.
MICE. Outline Experimental methods and goals Beam line Diagnostics – In HEP parlance – the detectors Magnet system 2MICE Optics Review January 14, 2016.
Development of 100 MHz trackers
P. Dornan, K. Long, 2 October, 2016 MICE, the Neutrino Factory and the Muon Collider.
The New CHOD detector for the NA62 experiment at CERN S
Scintillation Detectors in High Energy Physics
Chris Smith California Institute of Technology EPS Conference 2003
The Detector System of the MICE Experiment
Presentation transcript:

2005/3/271 3HF 蛍光体を添加した Sci-Fi の基礎 開発 阪大理 (A) 青木正治 有本靖 久野良孝 栗山靖敏 佐藤朗 田窪洋介 中丘末広 中原健吾 堀越篤 松島朋宏 吉田誠 高エ研 (B) 五十嵐洋一 横井武一郎 吉村浩司 FNAL (C) Alan Bross Imperial College London (D) Ken Long, Malcolm Ellis 大阪大学大学院理学研究科 坂本英之

2005/3/27 2 Contents  MICE (Muon Ionization Cooling Experiment)  MICE SciFi Tracker  3HF doped 0.35mm-phi scintillating fiber  KEK Beam Test (T553)  Setup  Analysis  Results  Summary

2005/3/27 3 MICE (Muon Ionization Cooling Experiment)  Ionization cooling of muon  Neutrino Factory MICE  Never been practiced… demonstration by MICE  MICE  International collaboration experiment (starting from  Measurement of emittance reduction Trackers back & forward cooling channel MICE Scintillating Fiber (SciFi) Tracker Absorber ( liquid hydrogen ) SC solenoid ( 5T ) Tracker RF -cavity ( 200 MHz) [ emittance measuring ] μ Experimental Setup of MICE

2005/3/27 4 The MICE collaboration  141 physicists and engineers from 40 institutions in 9 countries  Belgium: UC Louvain  France: CEA/Saclay  Italy: INFN Bari, Frascati, Genoa, Legnaro, Milano, Napoli, Padova, Roma, III, Trieste  Japan: KEK, Osaka U  Netherlands: NIKHEF  Russian Federation: BINP  CERN  Switzerland: U Geneve, ETH-Zurich, PSI  UK: Brunel, Edinburgh, Glasgow, Liverpool, Imperial, Oxford, Sheffield  USA: ANL, BNL, Fairfield, Chicago, Fermilab, IIT, JLab, LBNL, UCLA, Northern Illinois, Iowa, Mississippi, UC Riverside

2005/3/27 5 To photon detector Waveguide Station MICE SciFi Tracker  R&D with UK, US and Japan  Components  Station 3HF doped 0.35mm-phi scintillating fiber  Waveguide 4m-long optical clear fiber  Photon detector VLPC (Visible Light Photon Counter)  High Q.E. 80% at 3HF emission peak (530nm)  Requirement  Higher efficiency e.g., 99.7% Checking light yield by beam test

2005/3/27 6 T553 beam test  KEK-PS T1 beam line, April-May 2004  Purpose  Selecting best 3HF concentration on light yield  And confirming enough high light yield  Scintillating fibers  Kuraray SCSF-3HF, 0.35mm-phi, multi-cladding and S-type  Base: polystyrene (99%)  First dopant: p-terphenyl (1%)  Second dopant: 3HF (2500, 4500, 5000, 7500, 10000ppm)  Photon detector  PMT (HAMAMATSU R7411U-40MOD) Cathode: GaAsP (5mm-phi effective area) Anode: 8 stages Gain: Quantum efficiency:

2005/3/27 7  Beam  1.2 GeV/c  Pion, proton, ….  Trigger  TOF & Defining counters  Setup of scintillating fibers  0.42-mm pitch with double layer and 4m-long waveguide  PMT gain monitor by LED  Mounted in dark box Experimental setup 1.5m 4m 1.2 GeV/c TOF2 Sci-Fi TOF1 D1 Dark box D2 p π + Beam D3 mirror PMT Optical connector scifi clear fiber 2cm×2cm defined beam LED Front view Side view 420um 350um Double layer

2005/3/27 8 Analysis  Pion selection by TOF → Events in ADC gate → P.E. conversion by LED calibration  Background rejection  Subtracting using off-time ADC spectrum  But still remains… ⇒ cutting under 1.5 p.e.  Number of p.e.  Mean of A (w/ cut) and B (w/o cut)  Systematic error is 8 p.e. 1.5 p.e. cut w/o cut Light yield (p.e.) sys.err. A B # of events ADC count ADC histogramSubtracted histogram # of events P.E. 1.5 TDC count # of events TDC histogram Off-time ADC gate

2005/3/27 9 3HF concentration dependence  Selecting best 3HF concentration on light yield  5000 ppm has highest light yield  But there was no significant difference among other concentrations 3HF concentration # of p.e ppm 8.0 (0.4) 4500 ppm 8.3 (0.4) 5000 ppm 8.5 (0.5) 7500 ppm 7.1 (0.5) ppm 7.7 (0.4) # of p.e. 3HF concentration (ppm)

2005/3/27 10 Expected light yield at MICE scifi tracker  At MICE scifi tracker  Double layer Difference of path length  Waveguide Attenuation of clear fiber  VLPC readout  5.2×80%÷50%=8.3 p.e.  Efficiency P(n, μ) = μ n exp(-μ) / n! Poisson distribution 3HF concentration5000 ppm2500 ppm Single layer w/o waveguide 8.5 (0.5)8.0 (0.4) Single layer w/ waveguide 3.8 (0.6)3.2 (0.5) Double layer w/o waveguide 11.2 (0.5)9.6 (0.4) Double layer w/ waveguide 5.2 (0.4)4.4 (0.5) Expected light yield at MICE 8.3 (0.6)7.0 (0.8) Efficiency 99.7%99.3%

2005/3/27 11 Summary  MICE scifi tracker based on 3HF doped 0.35mm scintillating fibers will be used  KEK beam test (T553) was performed in April-May 2004  5.2 ± 0.4 (double layer with 4m-long waveguide)  4.4 ± 0.5 (double layer with 4m-long waveguide)  From T553,  Over 99% efficiency will be expected at MICE with 5000ppm and also 2500ppm  These meet the requirement of MICE scifi tracker 3HF concentration 5000 ppm2500 ppm T (0.4)4.4 (0.5) MICE (Expected)8.3 (0.6)7.0 (0.8) Efficiency99.7%99.3%

2005/3/27 12 END

2005/3/27 13 Neutrino Factory  Physics  Precise measurement of the MNS matrix element  Observation of the matter effect the sign of Δm 23 2 leptonic CP violation  Neutrino production  Goals  (E ν ) max = 50 GeV  10^20 muon decays/year  Advantages  Precise known energy spectrum and flavor composition  High-energy electron neutrinos  Need “cooling” of muons  Accelerating intense muon beam by reduction of emittance (cooling)  Fast cooling is essential before decaying of muons  Ionization cooling ! μ → e νν Cooling !

2005/3/ HF scintillating fibers  VLPC can detect green lights ( nm) at most.  Doping 3HF as a wavelength shifter; 350 nm ⇒ 530 nm  Doping with high concentration in order to improve the absorption efficiency. Absorption and emission spectrum of 3HFVLPC quantum efficiency

2005/3/27 15 PMT gain calibration  Purpose  Measuring the gain  Monitoring of gain stability  Gain  # of p.e. per ADC count  # of p.e. = (MEAN/RMS)^2 From Poisson distribution  10 % discrepancy was confirmed by position dependence of gain  Systematic error from PMT is less than 5 % Number of P.E. Run number

2005/3/27 16 Data from Scifis Background ADC-TDC scatter plot TDC count ADC count Phosphorescence ADC histogram ADC count Proton hit Pion hit

2005/3/27 17 Effect of double layer

2005/3/ cm Side view Layout of SciFi Station u V W

2005/3/27 19 Ionization Cooling  Fast cooling is possible  Best method for muon cooling  Principle  Passing through absorber (loss total momentum) followed by RF (restore longitudinal momentum)  Result in reduction in p ⊥ spread,i.e. (transverse) cooling Z X