Chapter 4 Light and Atoms Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Slides:



Advertisements
Similar presentations
Video Field Trip: Fireball
Advertisements

Universe Eighth Edition Universe Roger A. Freedman William J. Kaufmann III CHAPTER 5 The Nature of Light CHAPTER 5 The Nature of Light.
Radiation:.
Radiation and Spectra Chapter 5
Chapter 4 Light and Atoms
Unit 4 Light and Atoms.
Light. Properties Light is key to understanding the universe by analyzing light; we learn what planets & stars are made of and their temperature. Light.
Light and Atoms Chapter 3.
Unlocking Light The key to understanding the Cosmos.
ASTRONOMY 161 Introduction to Solar System Astronomy Class 9.
Light Solar System Astronomy Chapter 4. Light & Matter Light tells us about matter Almost all the information we receive from space is in the form of.
1 Light and Atoms Why study the behavior of light and atoms? –It is only through light that we know anything about the Universe. –We can’t experiment on.
PHYS 206 Matter and Light At least 95% of the celestial information we receive is in the form of light. Therefore we need to know what light is and where.
Chapter 3 Light and Atoms Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Astro 201: Sept. 14, 2010 Read: Hester, Chapter 4 Chaos and Fractal information on class web page On-Line quiz #3: available after class, due next Tuesday.
Astronomy 1 – Winter 2011 Lecture 7; January
Test #1, Wednesday, Feb 10 I will post a review for Test 1 in the A101 homepage under the link to “Lectures” this week. I will tell you the topics to review.
This Set of Slides This set of slides deals with the nature of light, how it’s created, some ways that it’s used in astronomy. Units covered: 21, 22, 24.
Chapter 5 Basic properties of light and matter. What can we learn by observing light from distant objects? How do we collect light from distant objects?
Quiz 1 Each quiz sheet has a different 5-digit symmetric number which must be filled in (as shown on the transparency, but NOT the same one!!!!!) Please.
© 2004 Pearson Education Inc., publishing as Addison-Wesley Orbital Energy and Escape Velocity orbital energy = kinetic energy + gravitational potential.
The Nature of Light Chapter Five. Guiding Questions 1.How fast does light travel? How can this speed be measured? 2.Why do we think light is a wave? What.
Electromagnetic Spectrum. Different forms of radiation arranged in order according to their wavelength. – Travels through space at 300,000 km/s or 186,000.
Chapter 2 Decoding the Hidden Messages in Starlight
Chapter 3 Light and Matter
Blackbody Radiation & Atomic Spectra. “Light” – From gamma-rays to radio waves The vast majority of information we have about astronomical objects comes.
The Electromagnetic Spectrum
The Electromagnetic Spectrum (EMS). Electromagnetic Wave An electromagnetic wave is a transverse wave that carries electrical and magnetic energy. The.
Earth Science 24.1 The Sun: Study of Light
Blackbody Radiation And Spectra. Light is a form of _______. Why is this important? With very few exceptions, the only way we have to study objects in.
Stars and Galaxies 28.1 A Closer Look at Light Chapter 28.
Guiding Questions 1. How fast does light travel? How can this speed be measured? 2. Why do we think light is a wave? What kind of wave is it? 3. How is.
Light as Messenger.
Astronomy Chapter 4 Review Game
Energy Energy is a property that enables something to do work
Properties of Light.
Waves, Photons & the EM Spectrum  Astronomers obtain information about the universe mainly via analysis of electromagnetic (em) radiation: visible light.
Measuring Light Quantitatively Spectroscopy: measuring wavelengths ( ) and frequencies (  ) emitted or absorbed by matter; composition of stars Photometry:
The SUN.
Donna Kubik PHYS162 Fall, Because of its electric and magnetic properties, light is called electromagnetic radiation. It consists of perpendicular,
NATURE OF LIGHT.  The electromagnetic spectrum comprise of the following:  1. Radio waves  Electromagnetic radiation with wavelengths that range from.
Chapter 5: Light.
Quiz 1, Astro 1140, AU15, Pradhan – Curve: +10% A B C D E.
Bell Ringer What is the Geocentric Universe? What is a Heliocentric Universe?
5-1 How we measure the speed of light 5-2 How we know that light is an electromagnetic wave 5-3 How an object’s temperature is related to the radiation.
© 2004 Pearson Education Inc., publishing as Addison-Wesley 6. Light: The Cosmic Messenger.
1 Nature of Light Wave Properties Light is a self- propagating electro- magnetic wave –A time-varying electric field makes a magnetic field –A time-varying.
READING Unit 22, Unit 23, Unit 24, Unit 25. Homework 4 Unit 19, problem 5, problem 7 Unit 20, problem 6, problem 9 Unit 21, problem 9 Unit 22, problem.
Light 1)Exam Review 2)Introduction 3)Light Waves 4)Atoms 5)Light Sources October 14, 2002.
Chapter 9: Waves and Light. Lesson 1: Waves of the Electromagnetic Spectrum Key Questions: – 1. How does the Sun’s energy arrive on Earth? – 2. How do.
Homework 4 Unit 21 Problem 17, 18, 19 Unit 23 Problem 9, 10, 13, 15, 17, 18, 19, 20.
Electomagnetic spectrum Visible light DopplerWavesLaws Misc $ 200 $ 200$200 $ 200 $ 200 $400 $ 400$400 $ 400$400 $600 $ 600$600 $ 600 $ 600 $ 600.
1 Light and Atoms Why study the behavior of light and atoms? –It is only through light that we know anything about the Universe –We can’t experiment on.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 2 Light and Matter.
CH. 4.  Energy that can travel through space from one point to another without any physical link  We can see stars explode, but why can’t we hear them?
The Electromagnetic Spectrum
Universe Tenth Edition Chapter 5 The Nature of Light Roger Freedman Robert Geller William Kaufmann III.
Electromagnetic Radiation, Atomic Structure & Spectra.
Chapter 24 Video Field Trip: Fireball Write down five facts from the video!
The Origin and Nature of Light. But, what is light? In the 17th Century, Isaac Newton argued that light was composed of little particles while Christian.
Starter 1.Where are most asteroids located? 2.Describe the structure of a comet. 3.Where do short period comets come from? What about long period comets?
The Study of Light.
Light Monday, October 6 Next Planetarium Shows: Tues 7 pm, Wed 7 pm.
Unit 3.  Much of the information we get in astronomy is carried by “light”.
Light and The Electromagnetic Spectrum Why do we have to study “light”?... Because almost everything in astronomy is known because of light (or some.
© 2017 Pearson Education, Inc.
© 2017 Pearson Education, Inc.
Electromagnetic Spectrum
Light and Matter Chapter 2.
Whatha Phenomenon? 1st write your Explicit reaction
Presentation transcript:

Chapter 4 Light and Atoms Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Light – the Astronomer’s Tool Due to the vast distances, with few exceptions, direct measurements of astronomical bodies are not possible We study remote bodies indirectly by analyzing their light Understanding the properties of light is therefore essential Care must be given to distinguish light signatures that belong to the distant body from signatures that do not (e.g., our atmosphere may distort distant light signals)

Properties of Light –Light is radiant energy: it does not require a medium for travel (unlike sound!) –Light travels at 299, km/s in a vacuum (fast enough to circle the Earth 7.5 times in one second) –Speed of light in a vacuum is constant and is denoted by the letter “c” –However, the speed of light is reduced as it passes through transparent materials The speed of light in transparent materials is dependent on color Fundamental reason telescopes work the way they do!

Sometimes light can be described as a wave… –The wave travels as a result of a fundamental relationship between electricity and magnetism –A changing magnetic field creates an electric field and a changing electric field creates a magnetic field

…and sometimes it can be described as a particle! –Light thought of as a stream of particles called photons –Each photon particle carries energy, depending on its frequency or wavelength

So which model do we use? –Well, it depends! In a vacuum, photons travel in straight lines, but behave like waves Sub-atomic particles also act as waves Wave-particle duality: All particles of nature behave as both a wave and a particle Which property of light manifests itself depends on the situation We concentrate on the wave picture henceforth

Light and Color Colors to which the human eye is sensitive is referred to as the visible spectrum In the wave theory, color is determined by the light’s wavelength (symbolized as ) –The nanometer (10 -9 m) is the convenient unit –Red = 700 nm (longest visible wavelength), violet = 400 nm (shortest visible wavelength)

The Visible Spectrum

Frequency Sometimes it is more convenient to talk about light’s frequency –Frequency (or ) is the number of wave crests that pass a given point in 1 second (measured in Hertz, Hz) –Important relation: = c –Long wavelenth = low frequency –Short wavelength = high frequency

White light – a mixture of all colors A prism demonstrates that white light is a mixture of wavelengths by its creation of a spectrum Additionally, one can recombine a spectrum of colors and obtain white light

The Electromagnetic Spectrum The electromagnetic spectrum is composed of radio waves, microwaves, infrared, visible light, ultraviolet, x rays, and gamma rays Longest wavelengths are more than 10 3 km Shortest wavelengths are less than m Various instruments used to explore the various regions of the spectrum

Infrared Radiation Sir William Herschel (around 1800) showed heat radiation related to visible light He measured an elevated temperature just off the red end of a solar spectrum – infrared energy Our skin feels infrared as heat

Ultraviolet Light J. Ritter in 1801 noticed silver chloride blackened when exposed to “light” just beyond the violet end of the visible spectrum Mostly absorbed by the atmosphere Responsible for suntans (and burns!)

Radio Waves Predicted by Maxwell in mid-1800s, Hertz produced radio waves in 1888 Jansky discovered radio waves from cosmic sources in the 1930s, the birth of radio astronomy Radio waves used to study a wide range of astronomical processes Radio waves also used for communication, microwave ovens, and search for extraterrestrials

X-Rays –Roentgen discovered X rays in 1895 –First detected beyond the Earth in the Sun in late 1940s –Used by doctors to scan bones and organs –Used by astronomers to detect black holes and tenuous gas in distant galaxies

Gamma Rays Gamma Ray region of the spectrum still relatively unexplored Atmosphere absorbs this region, so all observations must be done from orbit! We sometimes see bursts of gamma ray radiation from deep space

Energy Carried by Electromagnetic Radiation –Each photon of wavelength carries an energy E given by: E = hc/ where h is Planck’s constant –Notice that a photon of short wavelength radiation carries more energy than a long wavelength photon –Short wavelength = high frequency = high energy –Long wavelength = low frequency = low energy

Spectroscopy Allows the determination of the composition and conditions of an astronomical body In spectroscopy, we capture and analyze a spectrum Spectroscopy assumes that every atom or molecule will have a unique spectral signature

Types of Spectra –Continuous spectrum Spectra of a blackbody Typical objects are solids and dense gases –Emission-line spectrum Produced by hot, tenuous gases Fluorescent tubes, aurora, and many interstellar clouds are typical examples –Dark-line or absorption-line spectrum Light from blackbody passes through cooler gas leaving dark absorption lines Fraunhofer lines of Sun are an example

Emission Spectrum

Continuous and Absorption Spectra

Astronomical Spectra

Matter and Heat The Nature of Matter and Heat –The ancient Greeks introduced the idea of the atom (Greek for “uncuttable”), which today has been modified to include a nucleus and a surrounding cloud of electrons –Heating (transfer of energy) and the motion of atoms was an important topic in the 1700s and 1800s

A New View of Temperature The Kelvin Temperature Scale –An object’s temperature is directly related to its energy content and to the speed of molecular motion –As a body is cooled to zero Kelvin, molecular motion within it slows to a virtual halt and its energy approaches zero  no negative temperatures –Fahrenheit and Celsius are two other temperature scales that are easily converted to Kelvin

The Kelvin Temperature Scale

Radiation and Temperature Heated bodies generally radiate across the entire electromagnetic spectrum There is one particular wavelength, m, at which the radiation is most intense and is given by Wien’s Law: m = k/T Where k is some constant and T is the temperature of the body

Radiation and Temperature –Note hotter bodies radiate more strongly at shorter wavelengths –As an object heats, it appears to change color from red to white to blue –Measuring m gives a body’s temperature –Careful: Reflected light does not give the temperature

Blackbodies and Wien’s Law –A blackbody is an object that absorbs all the radiation falling on it –Since such an object does not reflect any light, it appears black when cold, hence its name –As a blackbody is heated, it radiates more efficiently than any other kind of object –Blackbodies are excellent absorbers and emitters of radiation and follow Wien’s law –Very few real objects are perfect blackbodies, but many objects (e.g., the Sun and Earth) are close approximations –Gases, unless highly compressed, are not blackbodies and can only radiate in narrow wavelength ranges

Blackbodies and Wien’s Law

The Structure of Atoms Nucleus – Composed of densely packed neutrons and positively charged protons Cloud of negative electrons held in orbit around nucleus by positive charge of protons Typical atom size: m (= 1 Å = 0.1 nm)

The Chemical Elements An element is a substance composed only of atoms that have the same number of protons in their nucleus A neutral element will contain an equal number of protons and electrons The chemical properties of an element are determined by the number of electrons

Doppler Shift in Sound If the source of sound is moving, the pitch changes!

Doppler Shift in Light –If a source of light is set in motion relative to an observer, its spectral lines shift to new wavelengths in a similar way –The shift in wavelength is given as  = – o = o v/c where is the observed (shifted) wavelength, o is the emitted wavelength, v is the source non- relativistic radial velocity, and c is the speed of light

Redshift and Blueshift An observed increase in wavelength is called a redshift, and a decrease in observed wavelength is called a blueshift (regardless of whether or not the waves are visible) Doppler shift is used to determine an object’s velocity

Absorption in the Atmosphere Gases in the Earth’s atmosphere absorb electromagnetic radiation to the extent that most wavelengths from space do not reach the ground Visible light, most radio waves, and some infrared penetrate the atmosphere through atmospheric windows, wavelength regions of high transparency Lack of atmospheric windows at other wavelengths is the reason for astronomers placing telescopes in space