THE ROLE OF THE PATENT SYSTEM IN PROMOTING R&D AND STIMULATING TRANSFER OF TECHNOLOGY: The Perspective of a Research Institution BARTHELEMY NYASSE Laboratory.

Slides:



Advertisements
Similar presentations
LAPSI 4th Thematic Seminar Muenster, January 27, 2011 Should the information held by research institutions be included in the EU Directive on PSI Re-use?
Advertisements

Summary Slide Management of Intellectual Property Rights Enterprises, R&D Organizations and Universities Wayne H. Watkins - University of Akron.
- Generator of Policies for Small and Medium-Sized Companies.
Negotiating Technology License Agreements Tamara Nanayakkara.
Managing Intellectual Property Assets in International Business Anil Sinha, Counsellor, SMEs Division World Intellectual Property Organization (WIPO)
POLICY IMPLICATIONS OF NEW TRENDS IN TECHNOLOGY TRANSFER John H. Barton
Science, Technology, and Society Integrated Science 9.
Final Report Presentation By Mohammad Saber Sakhizada March,26 – 2009.
Australian Centre for Innovation Mid-Year Report 2014 Professor Ron Johnston, FTSE, FRSN Australian Centre for Innovation Addressing the challenges of.
By Joseph P. Allen 2014 AUTM Eastern Regional Meeting.
The Nuts & Bolts for Starting Your Business LEGAL ISSUES FOR START-UPS Stradling Yocca Carlson & Rauth, APC 660 Newport Center Drive, Suite 1600 Newport.
The Production and Consumption of Knowledge in Business and Academia Roger Elliott ALLEA.
The Bayh-Dole Act of 1980: Policy Model for Other Industrial Economies? David C. Mowery Haas School of Business U.C. Berkeley & NBER Bhaven N. Sampat University.
Interface between patent and sui generis systems of protection of plant varieties The 1978 UPOV Act does not allow both systems to be applied to the same.
Creation of IP Culture in Universities & Advantages of Universities having an IP Culture Dr Duncan Matthews Queen Mary University of London.
Office of the U.S. Trade Representative Kira M. Alvarez CHIEF NEGOTIATOR AND DEPUTY ASSISTANT U.S.T.R. For intellectual property enforcement.
National symposium on Competition law: Evolution and Transition, 2012 Competition Policy for IP Issues Pradeep S Mehta Secretary General, CUTS International.
IP 101 for LA BioMed Michael J. Shuster, Ph.D., J.D. October 9, 2013.
Universities and Patents From Open Science to Open Innovation Gilles Capart Chairman of ProTon Europe.
Genomics Research and Intellectual Property Emily Marden, J.D., M.Phil., A.M. April 28, 2011 Intellectual Property & Policy Research Group ipprg.wordpress.com.
National Science Foundation: Transforming Undergraduate Education in Science, Technology, Engineering, and Mathematics (TUES)
An Enterprising University Roger Ford Chair of Innovation and Technology Strategy.
EPIP 2 Research Tools in Genetics Sandy Thomas Nuffield Council on Bioethics November 2003.
The Case of Myriad Genetics (Vs. an array of National Government Funded European Union Research Institutes) Amir Zaher UC Berkeley, Senior Department of.
Master in Engineering Policy and Management of Technology, 8 th Edition - Science & Technology Innovation Policy 1 - By Keith Pavitt SPRU – Science Policy.
Management of Intellectual Property at Iowa State University Contributing to Economic Development Kenneth Kirkland, Ph.D. Executive Director, Iowa State.
The use of patents by a university spin-off. Sub-module BThe use of patents by a university spin-off 2/21 Structure of the case study University technology.
WIPO Dispute Resolution in International Science & Technology April 25, 2005 Ann M. Hammersla Senior Counsel, Intellectual Property Massachusetts Institute.
Current Issues in International Intellectual Property Law Access and Benefit Sharing of Genetic Resources in the Pacific Pacific Science Association Conference.
 Synthetic Biology: Caught between Property Rights, the Public Domain, and the Commons Arti Rai and James Boyle Presented by Pei-Ann Lin May 11, 2011.
A Dual Role Principal (Rector) of Heriot-Watt University Chair of the regional economic development company.
Genetic advances will only be acceptable if their application is carried out ethically, with due regard to autonomy, justice, education and the beliefs.
15 September Finding and using patent information.
Intellectual Property and S&T Policy. Outline Economic perspective on S&T policy –Science, technology, information as economic resources –Market failure.
Protection FITT (Fostering Interregional Exchange in ICT Technology Transfer)
Perspectives on the Sharing of Research Materials and Data Reid Adler Founder and Principal, Practical Innovation Strategy Washington, DC Presentation.
Intellectual Property, Patents & Technology Transfer Sagar Manoli Shashidhar, Philippe Abdel-Sayed Responsible Conduct in Biomedical Research EPFL,
YOUR RELIABLE PARTNER. “Taxation of intellectual property, research & development in Russian Federation”
UNCTAD/CD-TFT 1 Intellectual Property Rights and National Development Goals – Ensuring Innovation in Russia St. Petersburg/Moscow Study Tour 2008 Christoph.
© 2008 International Intellectual Property June 22, 2009 Class 6 Patents: Multilateral Agreements (Paris Convention); Economics of International Patent.
Patents and Medicines: How the system has discouraged innovation and reduced patient access to benefits of knowledge GREG PERRY Director General, EGA World.
Access to Genetic Resources & Traditional Knowledge The Bellagio compulsory cross-licensing proposal for benefit sharing consistent with more competition.
Unit 3 Lesson 5 Technology Transfer and Patents. Big Idea Patents are catalysts of new technologies and businesses and they stimulate economic development.
Policies Promoting IP Development in Universities and Higher Institutions of Learning In Africa OGADA Tom WIPO National Workshop on Intellectual Property.
A: Copy –Rights – Artistic, Literary work, Computer software Etc. B: Related Rights – Performers, Phonogram Producers, Broadcasters etc. C: Industrial.
Commons, Networks, and Technology Transfer Gerald Barnett Director, Intellectual Property Management University of California, Santa Cruz.
WP1: IP charter Geneva – 23rd June 2009 Contribution from CERN.
‘Linkage’ & other TRIPS+ provisions: a public health perspective Karin Timmermans World Health Organization Seminar “Data exclusivity and patent Bangkok.
Benefit Sharing Mechanism for Traditional Knowledge Proliferation Presented by: Presented by: Deepak Sharma Gaurav Soni.
Biotechnology / Life Sciences Ensuring Access Christina Sampogna July 2005 CASRIP – University of Washington, Seattle *Views expressed are those of the.
Intellectual Property Legal Implications. What is Intellectual Property? The product of creativity and intellectual endeavour Intellectual Property Rights.
Intellectual Property Right Bernard Denis, DG-KTT.
NATIONAL CONFERENCE Intellectual Property Policies for Universities and Innovation dr. sc. Vlatka Petrović Head, Technology Transfer Office Acting Head,
HOW DO PATENTING AND LICENSING AFFECT RESEARCH? JOAN S. LEONARD VICE PRESIDENT AND GENERAL COUNSEL HOWARD HUGHES MEDICAL INSTITUTE The National Academies.
Fundamentals of Intellectual Property
Developed by Cool Pictures and MultiMedia Presentations Copyright © 2004 by South-Western, a division of Thomson Learning, Inc. All rights reserved. Developed.
Review of Research-Related Agreements Between Academic Institutions and Other Entities. Manoja Ratnayake Lecamwasam, PhD Intellectual Property and Innovation.
Introduction The Patentability of Human Genes Is patenting human genes moral? Should it be legal? Should there be international intervention?
Patent Review Overview Summary of different types of Intellectual Property What is a patent? Why would you want one? What are the requirements for patentability?
VISHAAL HARISARAN Intellectual Property Rights in Animal Breeding and Genetics.
Competition and Intellectual Property Protection in the Pharmaceutical Sector Alexey Ivanov Director, HSE-Skolkovo Institute for Law and Development Director,
Role of the Land Grant University in Plant Breeding and Biotechnology Randy Woodson Agricultural Research Programs Purdue University.
Technology Transfer and Intellectual Property Rights Presentation at ASCI 29 th January 2016 Krishna Ravi Srinivas PhD
Technology Transfer Office
Towards a roadmap for collaborative R&D
Universities and the Commercial World
Stanford University Office of Technology Licensing (OTL)
IPR’s: new challenges and opportunities
University & Industry Collaborative IP Development
Patenting of Research Tools and Biomedical Innovation
Presentation transcript:

THE ROLE OF THE PATENT SYSTEM IN PROMOTING R&D AND STIMULATING TRANSFER OF TECHNOLOGY: The Perspective of a Research Institution BARTHELEMY NYASSE Laboratory of Medicinal Chemistry – Faculty of Science University of Yaoundé I - Cameroon GOVERNMENT OF THE REPUBLIC OF KENYA WORLD INTELLECTUAL PROPERTY ORGANIZATION Regional Forum, Nairobi, March 30 to April 1, 2009

What is behind the surge in academic patenting? Does patenting affect the quality and quantity of universities scientific output? Does the patent system limit the freedom to perform academic research?

Reward the creator of a useful thing, and society will gain more useful things. Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefore. Surge in Patenting

The boom in patenting (academic) originates from technological revolutions. This has been reinforced by Bayh-Dole Act-like regulations. Furthermore, many national & regional authorities have sponsored the creation of TTO local universities, aiming at maximizing knowledge spillovers from universities to industries. Licensing of university patents are one of the most widespread forms of such TT, due to their legal clarity.

Surge in Patenting Distinction between the private and the public domain of knowledge has blurred. IPR, formerly restricted to privately funded research, today protects publicly funded research results. Public scientific activity is moving slowly but surely in the same direction as the private one.

Surge in Patenting Governments have approved laws facilitating the private appropriation of knowledge, previously considered in the public domain. The Bayh Dole Act in the US, and similar laws in other developed countries, have authorized universities and other public research institutions to patent and license what is used to be in the public domain.

Patents granted to Research Institutions The Bayh-Dole Act in the United States:US research university patenting before & after passage of Bayh-Dole Act in 1980

Patents granted to Research Institutions Effects of Japanese Bayh-Dole Act passed in 1999

Records Patents granted to Research Institutions

Inventions

Surge in Patenting Total numbers of inventions recorded in Derwent World Patents Index for academic institutions, compared to the global total, from 2000 to 2005.

Patenting and Scientific Quality Output Fulfilling the patenting criteria requires the non-disclosure of the invention as long as a patent application has not been filed, especially in countries – such as most EU member states – offering no grace period. The increasing private funding of academic research frequently induces restrictions on the disclosure and timing of publication of the outcomes

Delays in diffusing and sharing data and results with other researchers are often attributed to requests by commercial partners. The effect of increased secrecy might slow the pace of research by making it impossible to verify results and by increasing duplicate research activities.

MONEY MOTIVATION Fund raising Money and publications

Patenting and Academic Freedom Increasing privatization of knowledge and; The corresponding shrinkage of the public domain.

Academic Freedom? Historically, IPR focused on the protection of research outputs rather than inputs. At present, there is a strong tendency to shift the focus of IPR protection to the inputs themselves. IPR protection covers products and processes in all sectors including pharmaceuticals, food industry and agriculture as well as restrictions on copyright exceptions.

Academic Freedom? Protection of secondary databases; Patenting of research tools (scientific knowledge that used to be in the public domain); Rules on data exclusivity; Material transfer agreements (MTAs);

Academic Freedom? Some views Patents may now impose significant constraints and costs upon foundational research. Patentability of a broad range of the inputs that researchers need to do their work may give rise to the tragedy of anti-commons that may make the acquisition of licenses and other rights too complicated to permit the pursuit of what otherwise should be socially and scientifically worthwhile research.

Academic Freedom? Some views Prospect of realizing financial gain from upstream research may discourage researchers from sharing information & research materials with one another, thereby hindering research efficiency and complementarities. Prospective financial gains from patenting may induce researchers to choose research subjects on the basis of commercial potential rather than social & scientific merit.

Research institutions find themselves confronted with the so-called patent thickets and royalty stacking. The patent thicket is a major problem because useful innovations in many technology fields require multiple inventive steps and technologies.

Examples of thickets and anticommons Monsantos patent on the process of transforming plants through the use of Agrobacterium tumefaciens is claimed so broadly that it could exclude all plant transformation processes that use any engineered bacteria to transfer foreign DNA into plant genomes. Monsantos patent on the neomycin phosphotransferase (nptII) gene, one of the most commonly used selectable markers, which confers antibiotic resistance in transformed plant material.

Examples of thickets and anticommons Golden Rice project. The provitamin A–enhanced rice was developed for humanitarian purposes to combat blindness & malnutrition in developing nations. Developing the rice required access to over 40 US patented technologies. The genes BRCA1 & BRCA2 have recently been associated with hereditary breast cancer. A diagnostic procedure for identifying the genes was licensed exclusively to Myriad Genetics, which went so far as to block testing by a University of Pennsylvania researcher. The fast-paced software and semiconductor industries also face similar difficulties.

Patent – Public Research Institutions Patents on early fundamental discoveries (especially scientific building blocks) may discourage or limit their use and hence slow the pace of research in that field. The most widely quoted example is the Cohen-Boyer patent on recombinant DNA. Allowing genetic information to be patented, researchers will no longer have free access to the information and materials necessary to perform biological research. This issue of access to research tools relates to ability of a patent holder to exclude others from using the material. A single patent holder having a proprietary position on a large number of nucleic acids, may be in a position to hold hostage future R&D efforts.

Freedom at Risk? According to National Academies of Science, intellectual property rights do not impede research: Only 1% of the random sample of 398 academic respondents reported suffering a project delay of more than a month due to patents on knowledge inputs necessary for their research, and none of them had stopped a research project due to the existence of patents. John P. Walsh, Charlene Cho, and Wesley Cohen, Patents, Material Transfers and Access to Research Inputs in Biomedical Research, September 20, 2005, 37, available at [

Freedom at Risk? Academic patenting has only limited effects on the direction, pace and quality of research. Scientific anti-commons show very little effects on academic researchers so far, limited to a few countries with weak or no research exemption regulations. Benefits of academic patenting on research exceed their potential negative effects. Nicolas van Zeebroeck et al. Journal of Intellectual Capital Vol. 9 No. 2, 2008 pp

The Role Academic institutions On average, U.S. universities receive licensing royalties equivalent to only 2%–4% of their research budgets.

The Role Academic institutions As patent holders, universities can exercise control over how a product is priced in LIC. Yale and Bristol Meyers Squib reduced the price of Stavudine (d4T) in South Africa by more than 95 % by agreeing not to enforce the patent there. Public research institutions in most developing countries are not yet directly concerned by the issues discussed above

The role of National Patent Offices in TT Making the expertise of National & Regional Patent Offices available for fostering the technology transfer from university to industry

The role of TTO A Technology Transfer Office (TTO) in each of the Universities will strive to: Raise awareness about the patent system in public research institutions Promote the institution of IP curricula Encourage the exploitation of IPRs in the transfer of technology from universities to industry

The role of National Patent Offices in technology transfer Develop IP management capacity in publicly funded research organisations Promote commercialisation of research results Use academic research results as information source for enterprises

A WAY FORWARD Many university scientists tend to ignore patents. In todays climate, where technologies are at the crux of science, it is difficult to see how professors could successfully perform any meaningful research without infringing patents. Broad claims on early discoveries that are fundamental to emerging fields of knowledge are particularly worrisome in light of the great value, demonstrated time and again in history of science and technology, of having many independent minds at work trying to advance a field. Public science has flourished by permitting scientists to challenge and build upon the work of rivals.