C&O 355 Mathematical Programming Fall 2010 Lecture 4 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.

Slides:



Advertisements
Similar presentations
C&O 355 Lecture 15 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A.
Advertisements

C&O 355 Lecture 16 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A.
C&O 355 Lecture 8 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Lecture 9 N. Harvey TexPoint fonts used in EMF.
C&O 355 Mathematical Programming Fall 2010 Lecture 6 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 9
C&O 355 Lecture 23 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
1 LP Duality Lecture 13: Feb Min-Max Theorems In bipartite graph, Maximum matching = Minimum Vertex Cover In every graph, Maximum Flow = Minimum.
Lecture #3; Based on slides by Yinyu Ye
C&O 355 Mathematical Programming Fall 2010 Lecture 22 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
Dragan Jovicic Harvinder Singh
C&O 355 Lecture 4 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 20 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Mathematical Programming Fall 2010 Lecture 15 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Lecture 20 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
How should we define corner points? Under any reasonable definition, point x should be considered a corner point x What is a corner point?
Duality Lecture 10: Feb 9. Min-Max theorems In bipartite graph, Maximum matching = Minimum Vertex Cover In every graph, Maximum Flow = Minimum Cut Both.
Solving a system of equations 1 x x x 3 = 3 2 x x x 3 = 2 3 x x x 3 = 3.
Approximation Algorithms
C&O 355 Mathematical Programming Fall 2010 Lecture 17 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Mathematical Programming Fall 2010 Lecture 1 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
C&O 355 Lecture 2 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 2 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 19 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
Simplex method (algebraic interpretation)
Linear Programming System of Linear Inequalities  The solution set of LP is described by Ax  b. Gauss showed how to solve a system of linear.
Pareto Linear Programming The Problem: P-opt Cx s.t Ax ≤ b x ≥ 0 where C is a kxn matrix so that Cx = (c (1) x, c (2) x,..., c (k) x) where c.
Approximation Algorithms Department of Mathematics and Computer Science Drexel University.
C&O 355 Mathematical Programming Fall 2010 Lecture 18 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A Image:
Privacy-Preserving Linear Programming Olvi Mangasarian UW Madison & UCSD La Jolla UCSD – Center for Computational Mathematics Seminar January 11, 2011.
Linear Programming (Convex) Cones  Def: closed under nonnegative linear combinations, i.e. K is a cone provided a 1, …, a p  K  R n, 1, …, p.
Linear Program Set Cover. Given a universe U of n elements, a collection of subsets of U, S = {S 1,…, S k }, and a cost function c: S → Q +. Find a minimum.
X y x-y · 4 -y-2x · 5 -3x+y · 6 x+y · 3 Given x, for what values of y is (x,y) feasible? Need: y · 3x+6, y · -x+3, y ¸ -2x-5, and y ¸ x-4 Consider the.
C&O 355 Mathematical Programming Fall 2010 Lecture 5 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
Hon Wai Leong, NUS (CS6234, Spring 2009) Page 1 Copyright © 2009 by Leong Hon Wai CS6234: Lecture 4  Linear Programming  LP and Simplex Algorithm [PS82]-Ch2.
OR Simplex method (algebraic interpretation) Add slack variables( 여유변수 ) to each constraint to convert them to equations. (We may refer it as.
C&O 355 Lecture 7 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
CPSC 536N Sparse Approximations Winter 2013 Lecture 1 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAA.
OR Chapter 7. The Revised Simplex Method  Recall Theorem 3.1, same basis  same dictionary Entire dictionary can be constructed as long as we.
1 a1a1 A1A1 a2a2 a3a3 A2A Mixed Strategies When there is no saddle point: We’ll think of playing the game repeatedly. We continue to assume that.
Hon Wai Leong, NUS (CS6234, Spring 2009) Page 1 Copyright © 2009 by Leong Hon Wai CS6234: Lecture 4  Linear Programming  LP and Simplex Algorithm [PS82]-Ch2.
Proving that a Valid Inequality is Facet-defining  Ref: W, p  X  Z + n. For simplicity, assume conv(X) bounded and full-dimensional. Consider.
Inequalities for Stochastic Linear Programming Problems By Albert Madansky Presented by Kevin Byrnes.
Linear Programming Back to Cone  Motivation: From the proof of Affine Minkowski, we can see that if we know generators of a polyhedral cone, they.
Linear Programming Chapter 9. Interior Point Methods  Three major variants  Affine scaling algorithm - easy concept, good performance  Potential.
OR  Now, we look for other basic feasible solutions which gives better objective values than the current solution. Such solutions can be examined.
C&O 355 Lecture 19 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
Linear Programming Chap 2. The Geometry of LP  In the text, polyhedron is defined as P = { x  R n : Ax  b }. So some of our earlier results should.
Approximation Algorithms Duality My T. UF.
Approximation Algorithms based on linear programming.
1 Chapter 4 Geometry of Linear Programming  There are strong relationships between the geometrical and algebraic features of LP problems  Convenient.
EMGT 6412/MATH 6665 Mathematical Programming Spring 2016
Chap 10. Sensitivity Analysis
Proving that a Valid Inequality is Facet-defining
Chap 9. General LP problems: Duality and Infeasibility
Polyhedron Here, we derive a representation of polyhedron and see the properties of the generators. We also see how to identify the generators. The results.
Polyhedron Here, we derive a representation of polyhedron and see the properties of the generators. We also see how to identify the generators. The results.
Chapter 4. Duality Theory
Chapter 5. The Duality Theorem
System of Linear Inequalities
I.4 Polyhedral Theory (NW)
Lecture 20 Linear Program Duality
Flow Feasibility Problems
Back to Cone Motivation: From the proof of Affine Minkowski, we can see that if we know generators of a polyhedral cone, they can be used to describe.
C&O 355 Lecture 3 N. Harvey Review of Lecture 2:
Proving that a Valid Inequality is Facet-defining
(Convex) Cones Def: closed under nonnegative linear combinations, i.e.
Chapter 2. Simplex method
Chapter 2. Simplex method
Presentation transcript:

C&O 355 Mathematical Programming Fall 2010 Lecture 4 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A

Outline Solvability of Linear Equalities & Inequalities Farkas’ Lemma Fourier-Motzkin Elimination Proof of Farkas’ Lemma Proof of Strong LP Duality

Strong Duality Primal LP:Dual LP: Strong Duality Theorem: Primal has an opt. solution x, Dual has an opt. solution y. Furthermore, optimal values are same: c T x = b T y. Our Goals: – Understand when Primal and Dual have optimal solutions – Compute those optimal solutions Combining Primal & Dual into a System of Inequalities: x is optimal for Primal and y is optimal for Dual, x and y are solutions to these inequalities: Can we characterize when systems of inequalities are solvable?

Systems of Equalities Lemma: Exactly one of the following holds: – There exists x satisfying Ax=b – There exists y satisfying y T A=0 and y T b>0 Geometrically… x1x1 x2x2 span(A 1,…,A n ) = column space of A x3x3 A1A1 A2A2 b (b is in column space of A)

Systems of Equalities Lemma: Exactly one of the following holds: – There exists x satisfying Ax=b (b is in column space of A) – There exists y satisfying y T A=0 and y T b>0 (or it is not) Geometrically… x2x2 column space of A x3x3 A1A1 A2A2 b x1x1 y Hyperplane Positive open halfspace ++ H a,0 col-space(A) µ H y,0 but b 2 H y,0

Systems of Inequalities Lemma: Exactly one of the following holds: – There exists x ¸ 0 satisfying Ax=b – There exists y satisfying y T A ¸ 0 and y T b<0 Geometrically… Let cone(A 1,…,A n ) = { § i x i A i : x ¸ 0 } “cone generated by A 1,…,A n ” (Here A i is the i th column of A) x1x1 x2x2 x3x3 A1A1 A2A2 b A3A3 cone(A 1,…,A n ) (b is in cone(A 1,…,A n ))

Systems of Inequalities Lemma: Exactly one of the following holds: – There exists x ¸ 0 satisfying Ax=b (b is in cone(A 1,…,A n )) – There exists y satisfying y T A ¸ 0 and y T b<0 Geometrically… x1x1 x2x2 x3x3 A1A1 A2A2 b A3A3 cone(A 1,…,A n ) Positive closed halfspace Negative open halfspace --+ H y,0 cone(A 1, ,A n ) 2 H y,0 but b 2 H y,0 (y gives a separating hyperplane) y

Lemma: Exactly one of the following holds: – There exists x ¸ 0 satisfying Ax=b (b is in cone(A 1,…,A n )) – There exists y satisfying y T A ¸ 0 and y T b<0 (y gives a “separating hyperplane”) This is called “Farkas’ Lemma” – It has many interesting proofs. There are 3 proofs in Ch. 6 of Matousek-Gartner – It is “equivalent” to strong duality for LP. – There are several “equivalent” versions of it. Gyula Farkas Systems of Inequalities

Gyula Farkas Variants of Farkas’ Lemma The System Ax · b Ax = b has no solution x ¸ 0 iff 9 y ¸ 0, A T y ¸ 0, b T y<0 9 y 2 R n, A T y ¸ 0, b T y<0 has no solution x 2 R n iff 9 y ¸ 0, A T y=0, b T y<0 9 y 2 R n, A T y=0, b T y  0 This is the simple lemma on systems of equalities These are all “equivalent” (each can be proved using another)

x y x-y · 4 -y-2x · 5 -3x+y · 6 x+y · 3 Given x, for what values of y is (x,y) feasible? Need: y · 3x+6, y · -x+3, y ¸ -2x-5, and y ¸ x-4 Consider the polyhedron Q = { (x,y) : -3x+y · 6, x+y · 3, -y-2x · 5, x-y · 4 } 2D System of Inequalities

x y x-y · 4 -y-2x · 5 -3x+y · 6 x+y · 3 Given x, for what values of y is (x,y) feasible? i.e., y · min{3x+6, -x+3} and y ¸ max{ -2x-5, x-4 } For x=-0.8, (x,y) feasible if y · min{3.6,3.8} and y ¸ max{-3.4,-4.8} For x=-3, (x,y) feasible if y · min{-3,6} and y ¸ max{1,-7} x=-0.8x=-3 Impossible! 2D System of Inequalities Consider the polyhedron Q = { (x,y) : -3x+y · 6, x+y · 3, -y-2x · 5, x-y · 4 }

2D System of Inequalities Consider the set Q = { (x,y) : -3x+y · 6, x+y · 3, -y-2x · 5, x-y · 4 } Given x, for what values of y is (x,y) feasible? i.e., y · min{3x+6, -x+3} and y ¸ max{ -2x-5, x-4 } Such a y exists, max{-2x-5, x-4} · min{3x+6, -x+3}, the following inequalities are solvable Conclusion: Q is non-empty, Q’ is non-empty. This is easy to decide because Q’ involves only 1 variable! -2x-5 · 3x+6 x-4 · 3x+6 -2x-5 · -x+3 x-4 · -x+3 ´ -5x · 11 -2x · 10 -x · 8 2x · 7 Q’ = x : x ¸ -11/5 x ¸ -5 x ¸ -8 x · 7/2 = x : Every “lower” constraint is · every “upper” constraint

Fourier-Motzkin Elimination Joseph FourierTheodore Motzkin Generalization: given a set Q = { (x 1, ,x n ) : Ax · b }, we want to find set Q’ = { (x’ 1, ,x’ n-1 ) : A’x’ · b’ } satisfying (x 1, ,x n-1 ) 2 Q’, 9 x n s.t. (x 1, ,x n-1,x n ) 2 Q Q’ is called a projection of Q (onto the first n-1 coordinates) Fourier-Motzkin Elimination is a procedure for producing Q’ from Q Consequences: An (inefficient!) algorithm for solving systems of inequalities, and hence for solving LPs too A way of proving Farkas’ Lemma by induction

Lemma: Let Q = { (x 1, ,x n ) : Ax · b }. We can construct Q’ = { (x’ 1, ,x’ n-1 ) : A’x’ · b’ } satisfying (1)(x 1, ,x n-1 ) 2 Q’, 9 x n s.t. (x 1, ,x n-1,x n ) 2 Q (2)Every inequality defining Q’ is a non-negative linear combination of the inequalities defining Q. Proof: Put inequalities of Q in three groups: (a i = i th row of A) Z={ i : a i,n =0 }P={ j : a j,n >0 }N={ k : a k,n <0 } WLOG, a j,n =1 8 j 2 P and a k,n =-1 8 k 2 N For any x 2 R n, let x’ 2 R n-1 be vector obtained by deleting coordinate x n The constraints defining Q’ are: a i ’x’ · b i 8 i 2 Z a j ’x’+a k ’x’ · b j +b k 8 j 2 P, 8 k 2 N This proves (2). In fact, (2) implies the “ ( direction” of (1): For every x 2 Q, x’ satisfies all inequalities defining Q’. Why? Because every constraint of Q’ is a non-negative lin. comb. of constraints from Q, with n th coordinate equal to 0. This is sum of j th and k th constraints of Q, because n th coordinate of a j +a k is zero!

Lemma: Let Q = { (x 1, ,x n ) : Ax · b }. We can construct Q’ = { (x’ 1, ,x’ n-1 ) : A’x’ · b’ } satisfying (1)(x 1, ,x n-1 ) 2 Q’, 9 x n s.t. (x 1, ,x n-1,x n ) 2 Q (2)Every inequality defining Q’ is a non-negative linear combination of the inequalities defining Q. Proof: Put inequalities of Q in three groups: Z={ i : a i,n =0 }P={ j : a j,n =1 }N={ k : a k,n =-1 } The constraints defining Q’ are: a i ’x’ · b i 8 i 2 Z a j ’x’+a k ’x’ · b j +b k 8 j 2 P, 8 k 2 N It remains to prove the “ ) direction” of (1). Note that: a k ’x’-b k · b j -a j ’x’ 8 j 2 P, 8 k 2 N. ) max k 2 N { a k ’x’-b k } · min j 2 P { b j -a j ’x’ } Let x n be this value, and let x = (x’ 1, ,x’ n-1,x n ). Then:a k x-b k = a k ’x’-x n -b k · 0 8 k 2 N b j -a j x = b j -a j ’x’-x n ¸ 0 8 j 2 P a i x = a i ’x’ · b i 8 i 2 Z ) x2Q) x2Q ¥ By definition of x, and since a k,n = -1 By definition of x n, a k ’x’ - b k · x n

Gyula Farkas Variants of Farkas’ Lemma The System Ax · b Ax = b has no solution x ¸ 0 iff 9 y ¸ 0, A T y ¸ 0, b T y<0 9 y 2 R n, A T y ¸ 0, b T y<0 has no solution x 2 R n iff 9 y ¸ 0, A T y=0, b T y<0 9 y 2 R n, A T y=0, b T y  0 We’ll prove this one

Lemma: Exactly one of the following holds: – There exists x 2 R n satisfying Ax · b – There exists y ¸ 0 satisfying y T A=0 and y T b<0 Proof: Suppose x exists. Need to show y cannot exist. Suppose y also exists. Then: Contradiction! y cannot exist.

Lemma: Exactly one of the following holds: – There exists x 2 R n satisfying Ax · b – There exists y ¸ 0 satisfying y T A=0 and y T b<0 Proof: Suppose no solution x exists. We use induction. Trivial for n=0, so let n ¸ 1. We use Fourier-Motzkin Elimination. Get an equivalent system A’x’ · b’ where (A’|0)=MA b’=Mb for some non-negative matrix M. Lemma: Let Q = { (x 1, ,x n ) : Ax · b }. We can construct Q’ = { (x 1, ,x n-1 ) : A’x’ · b’ } satisfying 1) Q is non-empty, Q’ is non-empty 2) Every inequality defining Q’ is a non-negative linear combination of the inequalities defining Q. (This statement is slightly simpler than our previous lemma)

Lemma: Exactly one of the following holds: – There exists x 2 R n satisfying Ax · b – There exists y ¸ 0 satisfying y T A=0 and y T b<0 Proof: Get an equivalent system A’x’ · b’ where (A’|0)=MA b’=Mb for some non-negative matrix M. We assume Ax · b has no solution, so A’x’ · b’ has no solution. By induction, 9 y’ ¸ 0 s.t. y’ T A’=0 and y’ T b’< 0. Define y=M T y’. Then:y ¸ 0, because y’ ¸ 0 and M non-negative y T A = y’ T MA = y’ T (A’|0) = 0 y T b = y’ T Mb = y’ T b’ < 0 ¥

Farkas’ Lemma ) Strong Duality By Asst 1 Q6, if x is feasible then either: (1)x is not an optimal solution (2)c is a non-negative lin. comb of the constraints tight at x More formally, (2) says: there exists y ¸ 0 s.t. y T A = c T and y i >0 only when a i T x = b i (a i = i th row of A) Suppose x is optimal for Primal. (i.e., (1) doesn’t hold) Then such a y exists. It is clearly feasible for Dual, and: So x and y are both optimal ¥ Primal LP:Dual LP: