Presentation is loading. Please wait.

Presentation is loading. Please wait.

Flow Feasibility Problems

Similar presentations


Presentation on theme: "Flow Feasibility Problems"β€” Presentation transcript:

1 Flow Feasibility Problems
Flow feasibility problem: Given (𝐺, 𝑒, π‘Ÿ, 𝑠, π‘˜), determine whether there exists a feasible flow from π‘Ÿ to 𝑠 of value at least π‘˜. algorithm and good characterization with max-flow min-cut thm. Other types of flow feasibility problems? Transportation Problem Given 𝐺=(𝑉,𝐸) with partition {𝑃,𝑄} of nodes and vectors π‘Žβˆˆ 𝑍 + 𝑃 , π‘βˆˆ 𝑍 + 𝑄 , find π‘₯∈ 𝑅 𝐸 satisfying ( π‘₯ π‘π‘ž :π‘žβˆˆπ‘„, π‘π‘žβˆˆπΈ )≀ π‘Ž 𝑝 , for all π‘βˆˆπ‘ƒ ( π‘₯ π‘π‘ž :π‘βˆˆπ‘ƒ, π‘π‘žβˆˆπΈ )= 𝑏 π‘ž , for all π‘žβˆˆπ‘„ π‘₯π‘π‘žβ‰₯0, for all π‘π‘žβˆˆπΈ π‘₯π‘π‘ž integral, for all π‘π‘žβˆˆπΈ. ο‚₯ 1 3 1 3 π‘Ÿ 𝑠 2 1 𝑃 2 1 𝑄 4 2 4 2 Combinatorial Optimization 2016

2 For any finite cut ′(𝐴βˆͺ𝐡βˆͺ{π‘Ÿ}), where π΄βŠ†π‘ƒ, π΅βŠ†π‘„, the capacity is
There exists integral feasible flow in TP iff there exists an integral feasible flow in 𝐺′ from π‘Ÿ to 𝑠 of value (π‘π‘ž :π‘žβˆˆπ‘„) For any finite cut ′(𝐴βˆͺ𝐡βˆͺ{π‘Ÿ}), where π΄βŠ†π‘ƒ, π΅βŠ†π‘„, the capacity is ( π‘Ž 𝑖 :π‘–βˆˆπ‘ƒβˆ–π΄)+ ( 𝑏 𝑗 :π‘—βˆˆπ΅) π‘ƒβˆ–π΄ π‘„βˆ–π΅ π‘Ÿ 𝑠 𝐴 𝐡 (𝐴βˆͺ𝐡βˆͺ{π‘Ÿ}) Cut capacity is at least (𝑏𝑗 :π‘—βˆˆπ‘„) iff (π‘Žπ‘– :π‘–βˆˆπ‘ƒ\A)β‰₯(𝑏𝑗 :π‘—βˆˆπ‘„\B) Check this condition for the sets 𝐴 s.t. every node in 𝑃\A is adjacent to a node in 𝑄\B, since any node violating this could be added to 𝐴. ( Define Neighborset 𝑁(𝐢) of πΆβŠ†π‘‰ : {𝑀: π‘£π‘€βˆˆπΈ π‘“π‘œπ‘Ÿ π‘ π‘œπ‘šπ‘’ π‘£βˆˆπΆ}. Then 𝑁(𝑄\B)=𝑃\A ) Necessary and sufficient conditions for existence of solution: π‘Ž(𝑁(𝐢))β‰₯𝑏(𝐢) , for all πΆβŠ†π‘„. Combinatorial Optimization 2016

3 Does there exist π‘₯∈ 𝑅 𝐸 (or 𝑍 𝐸 ) such that π‘Žπ‘£β‰€π‘“π‘₯(𝑣)≀𝑏𝑣 , for all π‘£βˆˆπ‘‰
General problem: Does there exist π‘₯∈ 𝑅 𝐸 (or 𝑍 𝐸 ) such that π‘Žπ‘£β‰€π‘“π‘₯(𝑣)≀𝑏𝑣 , for all π‘£βˆˆπ‘‰ 𝑙𝑒≀π‘₯𝑒≀𝑒𝑒, for all π‘’βˆˆπΈ Special case: 𝑙=0, π‘Ž=𝑏: want π‘₯∈ 𝑅 𝐸 such that 𝑓π‘₯(𝑣)=𝑏𝑣 , for all π‘£βˆˆπ‘‰ (3.8) 0≀π‘₯𝑒≀𝑒𝑒 , for all π‘’βˆˆπΈ Note that 𝑏(𝑉)=0 Form 𝐺′ with 𝑉′=𝑉βˆͺ{π‘Ÿ, 𝑠} π‘£π‘€βˆˆπΈ β‡’ capacity 𝑒𝑣𝑀 π‘£βˆˆπ‘‰, 𝑏𝑣<0 β‡’ arc π‘Ÿπ‘£ with π‘’π‘Ÿπ‘£=βˆ’ 𝑏𝑣 (𝑏𝑣<0: supply node) π‘£βˆˆπ‘‰, 𝑏𝑣>0 β‡’ arc 𝑣𝑠 with 𝑒𝑣𝑠=𝑏𝑣 (𝑏𝑣>0: demand node) Then 𝐺 has a feasible flow ⇔ There is an (π‘Ÿ,𝑠)-flow in 𝐺′ of value ( 𝑏 𝑣 :π‘£βˆˆπ‘‰, 𝑏 𝑣 >0) Combinatorial Optimization 2016

4 (3.8) has a solution ⇔ there exists no π΄βŠ†π‘‰ s.t.
𝑒(𝛿′(𝐴βˆͺ{π‘Ÿ}))<(𝑏𝑣: π‘£βˆˆπ‘‰, 𝑏𝑣>0) (from max-flow min-cut theorem) ⇔ (βˆ’π‘π‘£:π‘£βˆ‰π΄, 𝑏𝑣<0)+(𝑏𝑣:π‘£βˆˆπ΄, 𝑏𝑣>0)+𝑒((𝐴))<(𝑏𝑣:π‘£βˆˆπ‘‰, 𝑏𝑣>0) ⇔ (βˆ’π‘π‘£:π‘£βˆ‰π΄, 𝑏𝑣<0)+(𝑏𝑣:π‘£βˆˆπ΄, 𝑏𝑣>0)+𝑒((𝐴))< (𝑏𝑣:π‘£βˆˆπ΄, 𝑏𝑣>0)+(𝑏𝑣:π‘£βˆ‰π΄, 𝑏𝑣>0) ⇔ no 𝐴 with 𝑒((𝐴))<(𝑏𝑣:π‘£βˆ‰π΄) ⇔ for all 𝐴, have 𝑒((𝐴))β‰₯(𝑏𝑣:π‘£βˆ‰π΄) { or 𝑒(( 𝐴 ))β‰₯(𝑏𝑣:π‘£βˆˆπ΄) } 𝑉\A 𝑉\A π‘Ÿ 𝑏𝑣 𝑠 βˆ’π‘π‘£ 𝐴 𝐴 {𝑣:𝑏𝑣<0} {𝑣:𝑏𝑣>0} There cannot be a subset of nodes whose total demand exceeds its β€œimport capacity”. Combinatorial Optimization 2016

5 A circulation is a vector π‘₯∈ 𝑅 𝐸 with 𝑓π‘₯(𝑣)=0 for all π‘£βˆˆπ‘‰.
Thm 3.15(Gale, 1957) : There exists a solution to (3.8) ⇔ 𝑏(𝑉)=0 and, for every π΄βŠ†π‘‰, 𝑏(𝐴)≀𝑒(( 𝐴 )). If 𝑏 and 𝑒 integral, then (3.8) has an integral solution iff the same conditions hold. A circulation is a vector π‘₯∈ 𝑅 𝐸 with 𝑓π‘₯(𝑣)=0 for all π‘£βˆˆπ‘‰. Thm 3.17 (Hoffman’s Circulation Theorem, 1960): Given a digraph 𝐺, π‘™βˆˆ(𝑅βˆͺ{βˆ’ο‚₯})𝐸, and π‘’βˆˆ(𝑅βˆͺ{ο‚₯})𝐸, with 𝑙≀𝑒, There is a circulation π‘₯ with 𝑙≀π‘₯≀𝑒 ⇔ every π΄βŠ†π‘‰ satisfies 𝑒(( 𝐴 ))β‰₯𝑙((𝐴)). Also for integral version. (pf) 𝑙=βˆ’ο‚₯ β‡’ 𝑙=βˆ’π‘€ (𝑀 large integer) Let 𝑙≑0, π‘’β€²β‰‘π‘’βˆ’π‘™, π‘₯′≑π‘₯βˆ’π‘™ Then 𝑓 π‘₯ β€² 𝑣 =𝑓π‘₯(𝑣)βˆ’π‘“π‘™(𝑣) Hence π‘₯ is a circulation ⇔ 𝑓 π‘₯ β€² 𝑣 =βˆ’π‘“π‘™(𝑣) Apply Thm 3.15 with demands βˆ’π‘“π‘™(𝑣) and capacities π‘’βˆ’π‘™ Note that (βˆ’π‘“π‘™(𝑣) :π‘£βˆˆπ‘‰)=0 (nec condition for feasible flow)(why true?) So there exists a feasible circulation ⇔ for every π΄βŠ†π‘‰ we have π‘’βˆ’π‘™  𝐴 β‰₯βˆ’ο“(𝑓𝑙(𝑣) :π‘£βˆˆπ΄)=𝑙((𝐴))βˆ’π‘™( 𝐴 ) β‡’ 𝑒(( 𝐴 ))β‰₯𝑙((𝐴))  Combinatorial Optimization 2016

6 Generalization of Thm 3.15 and 3.17
Thm 3.18: Given a digraph 𝐺, π‘βˆˆ 𝑅 𝑉 such that 𝑏(𝑉)=0, π‘™βˆˆ(𝑅βˆͺ{βˆ’ο‚₯})𝐸, and π‘’βˆˆ(𝑅βˆͺ{ο‚₯})𝐸, with 𝑙≀𝑒, there exists π‘₯∈ 𝑅 𝐸 such that 𝑓π‘₯(𝑣)=𝑏𝑣 , for all π‘£βˆˆπ‘‰ 𝑙𝑒 ≀π‘₯𝑒 ≀𝑒𝑒 , for all π‘’βˆˆπΈ ⇔ every π΄βŠ†π‘‰ satisfies 𝑒(( 𝐴 ))β‰₯𝑏(𝐴)+𝑙((𝐴)) Min (π‘Ÿ, 𝑠) flow subject to lower bounds on the arcs min 𝑓π‘₯(𝑠) (3.9) subject to 𝑓π‘₯(𝑣)=0, for all π‘£βˆˆπ‘‰βˆ–{π‘Ÿ, 𝑠} π‘₯𝑒β‰₯𝑙𝑒, for all π‘’βˆˆπΈ. ( 𝑙β‰₯0 ) Assume every arc 𝑒 having 𝑙𝑒>0 is in an (π‘Ÿ, 𝑠)-dipath ( o.w. there may be no feasible solution) and there is no (𝑠, π‘Ÿ)-dipath ( o.w. may be unbounded) β‡’ There exists 𝑅, π‘Ÿβˆˆπ‘…, π‘…βŠ†π‘‰βˆ–{𝑠} such that ( 𝑅 )=βˆ… β‡’ for any solution π‘₯ of (3.9), have 𝑓π‘₯(𝑠)=π‘₯  𝑅 βˆ’{π‘₯(( 𝑅 ))}β‰₯𝑙((𝑅)) for any 𝑅 with ( 𝑅 )=βˆ…. (The bound can be made tight) Combinatorial Optimization 2016

7 Thm 3.19: (Min-Flow Max-Cut Theorem)
There exists a solution to (3.9) having 𝑓π‘₯(𝑠)β‰€π‘˜ ⇔ There does not exist π‘…βŠ†π‘‰ with π‘Ÿβˆˆπ‘…, π‘ βˆ‰π‘…, ( 𝑅 )=βˆ…, and 𝑙  𝑅 >π‘˜. Also for integral version. (pf) Add arc π‘ π‘Ÿ to 𝐺 with π‘™π‘ π‘Ÿ=0, π‘’π‘ π‘Ÿ=π‘˜ and put 𝑒𝑒=∞ for all π‘’βˆˆπΈ. Then new 𝐺′ has a circulation ⇔ (3.9) has solution of value at most π‘˜. ⇔ There does not exist π΄βŠ†π‘‰ with 𝑒(′(𝐴))<𝑙(′( 𝐴 )). Since 𝑒𝑒=∞ for all π‘’βˆˆπΈ, such 𝐴 satisfies (𝐴)=βˆ…. Since 𝑙(( 𝐴 ))>0, there exists π‘’βˆˆο€( 𝐴 ) with 𝑙𝑒>0 β‡’ since there must exist an (π‘Ÿ, 𝑠)-dipath using 𝑒, we have π‘Ÿβˆˆ 𝐴 , π‘ βˆˆπ΄. β‡’ π‘ π‘Ÿβˆˆο€β€²(𝐴) β‡’ π‘˜=𝑒(′(𝐴))<𝑙(′( 𝐴 ))=𝑙(( 𝐴 )). So take 𝑅= 𝐴 .  𝑙=0, 𝑒=π‘˜ 𝐴( 𝑅 ) 𝐴 (𝑅) π‘Ÿ 𝑠 Combinatorial Optimization 2016

8 Minimum Cuts and Linear Programming
LP interpretation of the min cut problem: max 𝑓π‘₯(𝑠) s.t. (π‘₯𝑀𝑣:π‘€βˆˆπ‘‰, π‘€π‘£βˆˆπΈ)βˆ’ο“(π‘₯𝑣𝑀:π‘€βˆˆπ‘‰, π‘£π‘€βˆˆπΈ)=0, for all π‘£βˆˆπ‘‰βˆ–{π‘Ÿ, 𝑠} 0≀π‘₯𝑣𝑀≀𝑒𝑣𝑀, for all π‘£π‘€βˆˆπΈ Dual Problem: min (𝑒𝑒𝑧𝑒 :π‘’βˆˆπΈ) (3.10) s.t. βˆ’π‘¦π‘£+𝑦𝑀+𝑧𝑣𝑀 β‰₯0, for all π‘£π‘€βˆˆπΈ, 𝑣, π‘€βˆˆπ‘‰βˆ–{π‘Ÿ, 𝑠} 𝑦𝑀+𝑧𝑣𝑀β‰₯0, for all π‘Ÿπ‘€βˆˆπΈ βˆ’ 𝑦𝑣+π‘§π‘£π‘Ÿ β‰₯0, for all π‘£π‘ŸβˆˆπΈ βˆ’ 𝑦𝑣+𝑧𝑣𝑠β‰₯1, for all π‘£π‘ βˆˆπΈ 𝑦𝑀+𝑧𝑠𝑀β‰₯βˆ’1, for all π‘ π‘€βˆˆπΈ 𝑧𝑒β‰₯0, for all π‘’βˆˆπΈ Define π‘¦π‘Ÿ=0, 𝑦𝑠=βˆ’1, we can unify the constraints as βˆ’π‘¦π‘£+𝑦𝑀+𝑧𝑣𝑀β‰₯0, for all π‘£π‘€βˆˆπΈ Then add 1 to each 𝑦𝑣 (dual feasibility not changed) Combinatorial Optimization 2016

9 βˆ’π‘¦π‘£+𝑦𝑀+𝑧𝑣𝑀β‰₯0, for all π‘£π‘€βˆˆπΈ 𝑧𝑒 β‰₯0, for all π‘’βˆˆπΈ
min (𝑒𝑒𝑧𝑒 :π‘’βˆˆπΈ) (3.11) s.t. π‘¦π‘Ÿ=1, 𝑦𝑠=0 βˆ’π‘¦π‘£+𝑦𝑀+𝑧𝑣𝑀β‰₯0, for all π‘£π‘€βˆˆπΈ 𝑧𝑒 β‰₯0, for all π‘’βˆˆπΈ Thm 3.20: If (3.11) has an optimal solution, it has one of the form: For some (π‘Ÿ, 𝑠)-cut (𝑅), 𝑦 is the characteristic vector of 𝑅 and 𝑧 is the characteristic vector of (𝑅). (pf) Choose (𝑅) to be a min cut. Then (𝑦, 𝑧) feasible to (3.11) and objective value is  𝑒𝑒𝑧𝑒 :π‘’βˆˆπΈ =𝑒  𝑅 = max flow value By LP duality, this is optimal to (3.11) and (3.10)  (See a different proof in the text.) We may identify the cut using the bounded variable simplex method applied to a converted problem. Note that a spanning tree corresponds to a maximum linearly independent columns of the network matrix. Combinatorial Optimization 2016

10 𝑙=0, 𝑒=∞ Basic arcs π‘Ÿ 𝑠 𝑦𝑣=1 𝑦𝑣=0 𝑅
Add arc π‘ π‘Ÿ with π‘™π‘ π‘Ÿ=0, π‘’π‘ π‘Ÿ=∞, and max π‘₯π‘ π‘Ÿ subject to 𝑓π‘₯(𝑣)=0 for all π‘£βˆˆπ‘‰. Add artificial variable π‘₯π‘Ž with 𝑙=𝑒=0 and objective coefficient 0 to the constraint corresponding to node 𝑠. As explained earlier, the artificial variable is always in the basis, hence dual variable 𝑦𝑠=0 in a b.f.s. (from 𝑦′𝐴𝑗= 𝑐 𝑗 for basic variables) If flow value is positive π‘₯π‘ π‘Ÿ is always in the basis, hence the spanning tree basis can be divided into two parts. Assigning 𝑦𝑣=1 for π‘£βˆˆπ‘…, 0 for π‘£βˆˆ 𝑅 satisfies 𝑦′𝐴𝑗=𝑐𝑗 for basic arcs (We have βˆ’π‘¦π‘£+𝑦𝑀=0 ) If current LP solution is optimal, the arcs in (𝑅) are at their upper bounds and the arcs in ( 𝑅 ) at 0 (and nonbasic). (at opt sol, have π‘₯ 𝑒 = 𝑒 𝑒 when 𝑐 𝑒 βˆ’π‘¦β€² 𝐴 𝑒 >0, and π‘₯ 𝑒 =0 when 𝑐 𝑒 βˆ’π‘¦β€² 𝐴 𝑒 <0 for nonbasic π‘₯ 𝑒 ) Combinatorial Optimization 2016

11 Different interpretation: min (𝑒𝑒𝑧𝑒 :π‘’βˆˆπΈ) (3.12) subject to
(𝑧𝑒 :π‘’βˆˆπ‘ƒ)β‰₯1, for all arc-sets P of simple (π‘Ÿ, 𝑠)-dipaths 𝑧𝑒β‰₯0, for all π‘’βˆˆπΈ Thm 3.21: If (3.12) has an optimal solution, then it has one that is the characteristic vector of an (π‘Ÿ, 𝑠)-cut (pf) (3.12) has a feasible solution and it is unbounded if some 𝑒𝑒<0, so assume that 𝑒β‰₯0. Choose 𝑧′ to be the characteristic vector of min cut (𝑅). Dual of (3.12) is max (𝑀𝑃 :𝑃 a simple (π‘Ÿ, 𝑠)-dipath) (3.13) s.t. (𝑀𝑃 :𝑒 an arc of 𝑃)≀𝑒𝑒, for all π‘’βˆˆπΈ 𝑀𝑃β‰₯0 , for all 𝑃 a simple (π‘Ÿ, 𝑠)-dipath Let π‘₯ be a max flow. Find simple (π‘Ÿ, 𝑠)-dipath 𝑃 such that π‘₯𝑒>0 for each arc of 𝑃, put 𝑀𝑃= min value of π‘₯𝑒 on 𝑃, subtract 𝑀𝑃 from π‘₯𝑒 for each arc 𝑒 of 𝑃. Repeat until 𝑓π‘₯(𝑠)=0, at which point 𝑀𝑃= max flow value. Then, 𝑀 is feasible to (3.13) and since 𝑀𝑃=(𝑒𝑒𝑧𝑒′), 𝑧′ is optimal to (3.12).  Combinatorial Optimization 2016

12 Thm 3.21 implies that the cut polyhedron defined by (3.12) is integral
Similar result also holds for path polyhedron. For the polyhedron (π‘₯𝑒 :π‘’βˆˆπΆ)β‰₯1, for all arc-sets 𝐢 of (π‘Ÿ, 𝑠)-cuts π‘₯𝑒β‰₯0, for all π‘’βˆˆπΈ Extreme points are incidence vectors of simple (π‘Ÿ, 𝑠)-dipaths (may be seen from results for blocking polyhedron) Let 𝑃={π‘₯∈ 𝑅 + 𝑛 :𝐴π‘₯β‰₯1}, where 𝐴 is a nonnegative matrix. Then the blocking polyhedron of 𝑃 is defined as 𝑃 𝐡 ={πœ‹βˆˆ 𝑅 + 𝑛 : πœ‹π‘₯β‰₯1 βˆ€π‘₯βˆˆπ‘ƒ} Then 𝑃 𝐡 ={πœ‹βˆˆ 𝑅 + 𝑛 :π΅πœ‹β‰₯1}, where rows of 𝐡 are extreme points of 𝑃. Also 𝑃 𝐡 𝐡 =𝑃. Here, each row of 𝐴 is the incidence vector of a simple π‘Ÿ, 𝑠 βˆ’dipath. Each row of 𝐡 is the incidence vector of a π‘Ÿ,𝑠 βˆ’cut. (no more details here.) Combinatorial Optimization 2016


Download ppt "Flow Feasibility Problems"

Similar presentations


Ads by Google