Presentation is loading. Please wait.

Presentation is loading. Please wait.

Proving that a Valid Inequality is Facet-defining

Similar presentations


Presentation on theme: "Proving that a Valid Inequality is Facet-defining"โ€” Presentation transcript:

1 Proving that a Valid Inequality is Facet-defining
Ref: W, p ๐‘‹โŠ† ๐‘ + ๐‘› . For simplicity, assume conv(๐‘‹) bounded and full-dimensional. Consider example, ๐‘‹= ๐‘ฅ,๐‘ฆ โˆˆ ๐‘… + ๐‘š ร— ๐ต 1 : ๐‘–=1 ๐‘š ๐‘ฅ ๐‘– โ‰ค๐‘š๐‘ฆ . conv(๐‘‹) is full-dimensional: Consider the ๐‘š+2 affinely independent points (0, 0), (0, 1), ( ๐‘’ ๐‘– , 1), ๐‘–=1,โ€ฆ,๐‘š. Problem 1: Given ๐‘‹โŠ† ๐‘ + ๐‘› and a valid inequality ๐œ‹๐‘ฅโ‰ค ๐œ‹ 0 for ๐‘‹, show that the inequality defines a facet of conv(๐‘‹). Ex: Show that ๐‘ฅ ๐‘– โ‰ค๐‘ฆ is facet-defining. Approach 1: (Use definition) Find ๐‘› points ๐‘ฅ 1 ,โ€ฆ, ๐‘ฅ ๐‘› โˆˆ๐‘‹ satisfying ๐œ‹๐‘ฅ= ๐œ‹ 0 , and then prove that these ๐‘› points are affinely independent. Ex: Consider ๐‘š+1 points: (0, 0), ( ๐‘’ ๐‘– , 1), and ( ๐‘’ ๐‘– + ๐‘’ ๐‘— , 1) for ๐‘—โ‰ ๐‘–. Integer Programming 2017

2 Approach 2: (indirect but useful way, see Thm 3.5, 3.6)
Select ๐‘กโ‰ฅ๐‘› points ๐‘ฅ 1 ,โ€ฆ, ๐‘ฅ ๐‘ก โˆˆ๐‘‹ satisfying ๐œ‹๐‘ฅ= ๐œ‹ 0 . Suppose that all these points lie on a generic hyperplane ๐œ‡๐‘ฅ= ๐œ‡ 0 . Solve the linear equation system ๐‘—=1 ๐‘› ๐œ‡ ๐‘— ๐‘ฅ ๐‘— ๐‘˜ = ๐œ‡ 0 for ๐‘˜=1,โ€ฆ,๐‘ก in the ๐‘›+1 unknowns ๐œ‡, ๐œ‡ 0 . If the only solution is ๐œ‡, ๐œ‡ 0 =๐œ† ๐œ‹, ๐œ‹ 0 for ๐œ†โ‰ 0, then the inequality ๐œ‹๐‘ฅโ‰ค ๐œ‹ 0 is facet-defining. Ex: Show ๐‘ฅ ๐‘– โ‰ค๐‘ฆ is facet-defining. Select points (0, 0), ( ๐‘’ ๐‘– , 1), ( ๐‘’ ๐‘– + ๐‘’ ๐‘— , 1) for ๐‘—โ‰ ๐‘– that are feasible and satisfy ๐‘ฅ ๐‘– =๐‘ฆ. As (0, 0) lies on ๐‘–=1 ๐‘š ๐œ‡ ๐‘– ๐‘ฅ ๐‘– + ๐œ‡ ๐‘š+1 ๐‘ฆ= ๐œ‡ 0 , have ๐œ‡ 0 =0. As ( ๐‘’ ๐‘– , 1) lies on the hyperplane ๐‘–=1 ๐‘š ๐œ‡ ๐‘– ๐‘ฅ ๐‘– + ๐œ‡ ๐‘š+1 ๐‘ฆ=0, have ๐œ‡ ๐‘– =โˆ’ ๐œ‡ ๐‘š+1 . As ( ๐‘’ ๐‘– + ๐‘’ ๐‘— , 1) lies on the hyperplane ๐‘–=1 ๐‘š ๐œ‡ ๐‘– ๐‘ฅ ๐‘– โˆ’ ๐œ‡ ๐‘– ๐‘ฆ=0, ๐œ‡ ๐‘— =0 for ๐‘—โ‰ ๐‘–. So the hyperplane is ๐œ‡ ๐‘– ๐‘ฅ ๐‘– โˆ’ ๐œ‡ ๐‘– ๐‘ฆ=0, and ๐‘ฅ ๐‘– โ‰ค๐‘ฆ is facet-defining. Integer Programming 2017

3 If conv(๐‘‹) is not full-dimensional, we may use approach 1 (find affinely independent points) or may use Thm 3.6 in the previous slides. Refer Proposition 3.5 on p.274 for a possible application of Thm 3.6. Integer Programming 2017

4 4. Describing Polyhedra by Extreme Points and Extreme Rays
Prop 4.1: If ๐‘ƒ={๐‘ฅโˆˆ ๐‘… ๐‘› :๐ด๐‘ฅโ‰ค๐‘}โ‰ โˆ… and rank(๐ด) =๐‘›โˆ’๐‘˜, ๐‘ƒ has a face of dimension ๐‘˜ and no proper face of lower dimension. Pf) For any face ๐นโŠ†๐‘ƒ, rank ๐ด ๐น = , ๐‘ ๐น = โ‰ค๐‘›โˆ’๐‘˜ โŸน dim ๐น โ‰ฅ๐‘˜. (Prop. 2.4) Show โˆƒ ๐น with dim ๐น =๐‘˜. Let ๐น be a face of minimum dimension ( >0). (If ๐‘˜=0, nothing to prove) Let ๐‘ฅ โˆ— be an inner point of ๐น, dim ๐น >0 โŸน โˆƒ ๐‘ฆโ‰  ๐‘ฅ โˆ— โˆˆ๐น. Consider ๐‘ง ๐œ† = ๐‘ฅ โˆ— +๐œ† ๐‘ฆโˆ’ ๐‘ฅ โˆ— , ๐œ†โˆˆ ๐‘… 1 . Suppose z(๐œ†) intersects ๐‘Ž ๐‘– ๐‘ฅ= ๐‘ ๐‘– for some ๐‘–โˆˆ ๐‘€ ๐น โ‰ค . Choose ๐œ† โˆ— = min { ๐œ† ๐‘– : ๐‘–โˆˆ ๐‘€ ๐น โ‰ค , ๐‘ง ๐œ† ๐‘– lies in ๐‘Ž ๐‘– ๐‘ฅ= ๐‘ ๐‘– }, and ๐œ† โˆ— = ๐œ† ๐‘– โˆ— . Then ๐œ† โˆ— โ‰ 0 ( ๐‘ฅ โˆ— is an inner point) โŸน ๐น ๐‘– โˆ— ={๐‘ฅโˆˆ๐‘ƒ: ๐ด ๐น = ๐‘ฅ= ๐‘ ๐น = , ๐‘Ž ๐‘– โˆ— ๐‘ฅ= ๐‘ ๐‘– โˆ— }โ‰ โˆ… is a face of ๐‘ƒ of smaller dimension than ๐น, which is a contradiction. Hence ๐‘ง(๐œ†) not intersect ๐‘Ž ๐‘– ๐‘ฅ= ๐‘ ๐‘– for any ๐‘–โˆˆ ๐‘€ ๐น โ‰ค . โŸน ๐ด ๐‘ฅ โˆ— +๐ด๐œ† ๐‘ฆโˆ’ ๐‘ฅ โˆ— โ‰ค๐‘ โˆ€ ๐œ†โˆˆ ๐‘… 1 โŸน ๐ด ๐‘ฆโˆ’ ๐‘ฅ โˆ— =0 โˆ€ ๐‘ฆโˆˆ๐น Thus ๐น={๐‘ฆ:๐ด๐‘ฆ=๐ด ๐‘ฅ โˆ— } โŸน dim ๐น =๐‘˜ since rank ๐ด =๐‘›โˆ’๐‘˜ ๏‚ Integer Programming 2017

5 Pf) (โŸธ) Suppose ๐‘ฅ is zero-dimensional face โŸน rank ๐ด ๐‘ฅ = =๐‘›. (Prop 2.4)
Frequently we assume ๐‘ƒโŠ† ๐‘… + ๐‘› โŸน rank ๐ด =๐‘› โŸน ๐‘ƒ has zero-dimensional faces if ๐‘ƒโ‰ โˆ…. Assume rank ๐ด =๐‘› hereafter. Def 4.1: ๐‘ฅโˆˆ๐‘ƒ is an extreme point of ๐‘ƒ if there do not exist ๐‘ฅ 1 , ๐‘ฅ 2 โˆˆ๐‘ƒ, ๐‘ฅ 1 โ‰  ๐‘ฅ 2 such that ๐‘ฅ= ๐‘ฅ ๐‘ฅ 2 . Prop 4.2: ๐‘ฅ is an extreme point of ๐‘ƒ โŸบ ๐‘ฅ is a zero-dimensional face of ๐‘ƒ. Pf) (โŸธ) Suppose ๐‘ฅ is zero-dimensional face โŸน rank ๐ด ๐‘ฅ = =๐‘›. (Prop 2.4) Let ( ๐ด , ๐‘ ) be submatrix of ( ๐ด ๐‘ฅ = , ๐‘ ๐‘ฅ = ) with ๐ด :๐‘›ร—๐‘› and rank ๐‘› โŸน ๐‘ฅ= ๐ด โˆ’1 ๐‘ . If ๐‘ฅ= ๐‘ฅ ๐‘ฅ 2 , ๐‘ฅ 1 , ๐‘ฅ 2 โˆˆ๐‘ƒ, then since ๐ด ๐‘ฅ ๐‘– โ‰ค ๐‘ , ๐‘–=1,2, we have ๐ด ๐‘ฅ 1 = ๐ด ๐‘ฅ 2 = ๐‘ ( ๐ด ๐‘ฅ= ๐ด ๐‘ฅ ๐ด ๐‘ฅ 2 = ๐‘ , ๐ด ๐‘ฅ 1 โ‰ค ๐‘ , ๐ด ๐‘ฅ 2 โ‰ค ๐‘ ) โŸน ๐‘ฅ 1 = ๐‘ฅ 2 =๐‘ฅ, so ๐‘ฅ is an extreme point. (โŸน) If ๐‘ฅโˆˆ๐‘ƒ is not a zero-dimensional face of ๐‘ƒ, then rank ๐ด ๐‘ฅ = <๐‘›. (Prop 2.4) โŸน โˆƒ ๐‘ฆโ‰ 0 such that ๐ด ๐‘ฅ = ๐‘ฆ=0. For small ๐œ€>0, let ๐‘ฅ 1 =๐‘ฅ+๐œ€๐‘ฆ, ๐‘ฅ 2 =๐‘ฅโˆ’๐œ€๐‘ฆ, ๐‘ฅ 1 , ๐‘ฅ 2 โˆˆ๐‘ƒ. Then ๐‘ฅ= ๐‘ฅ ๐‘ฅ 2 , hence ๐‘ฅ is not an extreme point. ๏ฟ Integer Programming 2017

6 ๐‘Ÿโˆˆ ๐‘… ๐‘› , ๐‘Ÿโ‰ 0 is a ray of ๐‘ƒ โŸบ โˆ€ ๐‘ฅโˆˆ๐‘ƒ, ๐‘ฆโˆˆ ๐‘… ๐‘› :๐‘ฆ=๐‘ฅ+๐œ†๐‘Ÿ, ๐œ†โˆˆ ๐‘… + 1 โŠ†๐‘ƒ.
Def 4.2: Let ๐‘ƒ 0 = ๐‘Ÿโˆˆ ๐‘… ๐‘› :๐ด๐‘Ÿโ‰ค0 . (recession cone, characteristic cone of ๐‘ƒ) If ๐‘ƒ= ๐‘ฅโˆˆ ๐‘… ๐‘› :๐ด๐‘ฅโ‰ค๐‘ โ‰ โˆ…, then ๐‘Ÿโˆˆ ๐‘ƒ 0 \{0} is called a ray of ๐‘ƒ. ๐‘Ÿโˆˆ ๐‘… ๐‘› , ๐‘Ÿโ‰ 0 is a ray of ๐‘ƒ โŸบ โˆ€ ๐‘ฅโˆˆ๐‘ƒ, ๐‘ฆโˆˆ ๐‘… ๐‘› :๐‘ฆ=๐‘ฅ+๐œ†๐‘Ÿ, ๐œ†โˆˆ ๐‘… + 1 โŠ†๐‘ƒ. Note: Cone ๐พ is called pointed if ๐พโˆฉ โˆ’๐พ = 0 . ๐พโˆฉ(โˆ’๐พ) is called lineality space of cone ๐พ. For ๐‘ƒ= ๐‘ฅโˆˆ ๐‘… ๐‘› :๐ด๐‘ฅโ‰ค๐‘ , if rank ๐ด =๐‘›, ๐‘ƒ 0 โˆฉ โˆ’ ๐‘ƒ 0 = ๐‘Ÿโˆˆ ๐‘… ๐‘› :๐ด๐‘Ÿโ‰ค0, โˆ’๐ด๐‘Ÿโ‰ค0 = 0 . Hence ๐‘ƒ 0 is guaranteed to be pointed. Def 4.3: A ray ๐‘Ÿ of ๐‘ƒ is an extreme ray if there do not exist ๐‘Ÿ 1 , ๐‘Ÿ 2 โˆˆ ๐‘ƒ 0 , ๐‘Ÿ 1 โ‰ ๐œ† ๐‘Ÿ 2 , ๐œ†โˆˆ ๐‘… + 1 such that ๐‘Ÿ= ๐‘Ÿ ๐‘Ÿ 2 . Integer Programming 2017

7 If ๐‘Ÿ= 1 2 ๐‘Ÿ 1 + 1 2 ๐‘Ÿ 2 , get contradiction as in Prop 4.2.
Prop 4.3: If ๐‘ƒโ‰ โˆ…, ๐‘Ÿ extreme ray of ๐‘ƒ if and only if {๐œ†๐‘Ÿ: ๐œ†โˆˆ ๐‘… + 1 } is one-dimensional face of ๐‘ƒ 0 . Pf) (โŸธ) Let ๐ด ๐‘Ÿ = = ๐‘Ž ๐‘– :๐‘–โˆˆ๐‘€, ๐‘Ž ๐‘– ๐‘Ÿ=0 . If {๐œ†๐‘Ÿ: ๐œ†โˆˆ ๐‘… + 1 } is a one-dimensional face of ๐‘ƒ 0 , rank ๐ด ๐‘Ÿ = =๐‘›โˆ’1 โŸน solutions of ๐ด ๐‘Ÿ = ๐‘ฆ=0 are ๐‘ฆ=๐œ†๐‘Ÿ, ๐œ†โˆˆ ๐‘… 1 . If ๐‘Ÿ= ๐‘Ÿ ๐‘Ÿ 2 , get contradiction as in Prop 4.2. (โŸน) If ๐‘Ÿโˆˆ ๐‘ƒ 0 and rank ๐ด ๐‘Ÿ = <๐‘›โˆ’1, then nullity of ๐ด ๐‘Ÿ = โ‰ฅ2. โŸน โˆƒ ๐‘Ÿ โˆ— โ‰ ๐œ†๐‘Ÿ, ๐œ†โˆˆ ๐‘… 1 such that ๐ด ๐‘Ÿ = ๐‘Ÿ โˆ— =0. Then ๐‘Ÿ= ๐‘Ÿ ๐‘Ÿ 2 , where ๐‘Ÿ 1 =๐‘Ÿ+๐œ€ ๐‘Ÿ โˆ— , ๐‘Ÿ 2 =๐‘Ÿโˆ’๐œ€ ๐‘Ÿ โˆ— . Hence ๐‘Ÿ is not an extreme ray, contradiction. ๏‚ Cor 4.4: A polyhedron has a finite number of extreme points and extreme rays. Question: Given ๐‘ƒ= ๐‘ฅโˆˆ ๐‘… ๐‘› :๐ด๐‘ฅโ‰ค๐‘, ๐‘ฅโ‰ฅ0 โ‰ โˆ…, how can we identify the extreme rays of ๐‘ƒ 0 ? Thm 4.5: If ๐‘ƒโ‰ โˆ…, rank ๐ด =๐‘›, and max {๐‘๐‘ฅ:๐‘ฅโˆˆ๐‘ƒ} is finite, then there is an optimal solution that is an extreme point. Pf) Set of optimal solution is face ๐น= ๐‘ฅโˆˆ๐‘ƒ:๐‘๐‘ฅ= ๐‘ By Prop. 4.1, ๐น contains ๐‘›โˆ’rank ๐ด โˆ’dimensional face. By Prop. 4.2, ๐น contains an extreme point. ๏ฟ Integer Programming 2017

8 (Compare with earlier Proposition regarding face.)
Thm 4.6: โˆ€ extreme points ๐‘ฅ ๐‘˜ , โˆƒ ๐‘โˆˆ ๐‘ ๐‘› such that ๐‘ฅ ๐‘˜ is the unique optimal solution of max {๐‘๐‘ฅ:๐‘ฅโˆˆ๐‘ƒ}. Pf) Let ๐‘€ ๐‘ฅ ๐‘˜ = be equality set of ๐‘ฅ ๐‘˜ . Let ๐‘ โˆ— = ๐‘–โˆˆ ๐‘€ ๐‘ฅ ๐‘˜ = ๐‘Ž ๐‘– , ๐‘=๐œ† ๐‘ โˆ— for some ๐œ†>0 to get integer vector ๐‘. Then โˆ€ ๐‘ฅโˆˆ๐‘ƒโˆ– ๐‘ฅ ๐‘˜ , ๐‘๐‘ฅ= ๐‘–โˆˆ ๐‘€ ๐‘ฅ ๐‘˜ = ๐œ† ๐‘Ž ๐‘– ๐‘ฅ < ๐‘–โˆˆ ๐‘€ ๐‘ฅ ๐‘˜ = ๐œ† ๐‘ ๐‘– = ๐‘–โˆˆ ๐‘€ ๐‘ฅ ๐‘˜ = ๐œ† ๐‘Ž ๐‘– ๐‘ฅ ๐‘˜ =๐‘ ๐‘ฅ ๐‘˜ . ๏ฟ (Compare with earlier Proposition regarding face.) Thm 4.7: ๐‘ƒโ‰ โˆ…, rank ๐ด =๐‘›, max{๐‘๐‘ฅ:๐‘ฅโˆˆ๐‘ƒ} unbounded, then ๐‘ƒ has an extreme ray ๐‘Ÿ โˆ— with ๐‘ ๐‘Ÿ โˆ— >0. Pf) ๐‘ขโˆˆ ๐‘… + ๐‘š :๐‘ข๐ด=๐‘ =โˆ… from duality of LP โŸน By Farkas, โˆƒ ๐‘Ÿโˆˆ ๐‘… ๐‘› such that ๐ด๐‘Ÿโ‰ค0, ๐‘๐‘Ÿ>0. Consider max ๐‘๐‘Ÿ:๐ด๐‘Ÿโ‰ค0, ๐‘๐‘Ÿโ‰ค1 =1. By Thm 4.5, โˆƒ optimal extreme point solution ๐‘Ÿ โˆ— . Equality set of ๐‘Ÿ โˆ— is ๐ด ๐‘Ÿ โˆ— = ๐‘Ÿ=0 and ๐‘๐‘Ÿ=1 โŸน rank ๐ด ๐‘Ÿ โˆ— = =๐‘›โˆ’1. โŸน ๐‘Ÿ โˆ— extreme ray of ๐‘ƒ (Prop 4.3) Integer Programming 2017

9 ๐‘ƒ= ๐‘ฅโˆˆ ๐‘… ๐‘› :๐ด๐‘ฅโ‰ค๐‘ โ‰ โˆ…, rank ๐ด =๐‘› (existence of extreme point guaranteed)
Thm 4.8: (Affine) Minkowskiโ€™s Thm: finitely constrained ๏ƒž finitely generated. ๐‘ƒ= ๐‘ฅโˆˆ ๐‘… ๐‘› :๐ด๐‘ฅโ‰ค๐‘ โ‰ โˆ…, rank ๐ด =๐‘› (existence of extreme point guaranteed) โŸน ๐‘ƒ={๐‘ฅโˆˆ ๐‘… ๐‘› :๐‘ฅ= ๐‘˜โˆˆ๐พ ๐œ† ๐‘˜ ๐‘ฅ ๐‘˜ + ๐‘—โˆˆ๐ฝ ๐œ‡ ๐‘— ๐‘Ÿ ๐‘— , ๐‘˜โˆˆ๐พ ๐œ† ๐‘˜ =1, ๐œ† ๐‘˜ โ‰ฅ0 ๐‘“๐‘œ๐‘Ÿ ๐‘˜โˆˆ๐พ, ๐œ‡ ๐‘— โ‰ฅ0 ๐‘“๐‘œ๐‘Ÿ ๐‘—โˆˆ๐ฝ}, where ๐‘ฅ ๐‘˜ ๐‘˜โˆˆ๐พ : extreme points of ๐‘ƒ, ๐‘Ÿ ๐‘— ๐‘—โˆˆ๐ฝ : extreme rays of ๐‘ƒ. Pf) Let ๐‘„={๐‘ฅโˆˆ ๐‘… ๐‘› :๐‘ฅ= ๐œ† ๐‘˜ ๐‘ฅ ๐‘˜ + ๐œ‡ ๐‘— ๐‘Ÿ ๐‘— , ๐œ† ๐‘˜ =1, ๐œ† ๐‘˜ โ‰ฅ0, ๐œ‡ ๐‘— โ‰ฅ0} . ๐‘„โŠ†๐‘ƒ is clear. Suppose โˆƒ ๐‘ฆโˆˆ๐‘ƒโˆ–๐‘„ (i.e. ๐‘ฆโˆˆ๐‘ƒ, but ๐‘ฆโˆ‰๐‘„). Show contradiction. Then not exist ๐œ†,๐œ‡ satisfying ๐‘˜โˆˆ๐พ ๐œ† ๐‘˜ ๐‘ฅ ๐‘˜ + ๐‘—โˆˆ๐ฝ ๐œ‡ ๐‘— ๐‘Ÿ ๐‘— =๐‘ฆ โˆ’ ๐‘˜โˆˆ๐พ ๐œ† ๐‘˜ =โˆ’1 ๐œ† ๐‘˜ โ‰ฅ0 for ๐‘˜โˆˆ๐พ, ๐œ‡ ๐‘— โ‰ฅ0 for ๐‘—โˆˆ๐ฝ By Farkasโ€™ lemma, โˆƒ (๐œ‹, ๐œ‹ 0 )โˆˆ ๐‘… ๐‘›+1 such that ๐œ‹ ๐‘ฅ ๐‘˜ โˆ’ ๐œ‹ 0 โ‰ค0 for ๐‘˜โˆˆ๐พ, ๐œ‹ ๐‘Ÿ ๐‘— โ‰ค0 for ๐‘—โˆˆ๐ฝ and ๐œ‹๐‘ฆโˆ’ ๐œ‹ 0 >0. Consider LP max ๐œ‹๐‘ฅ:๐‘ฅโˆˆ๐‘ƒ . Integer Programming 2017

10 Hence there does not exist such ๐‘ฆ, i.e. ๐‘„=๐‘ƒ. ๏ฟ
(continued) If LP has a finite optimal solution, then โˆƒ an extreme point optimal solution. Have ๐œ‹ ๐‘ฅ ๐‘˜ โˆ’ ๐œ‹ 0 โ‰ค0, but ๐œ‹๐‘ฆโˆ’ ๐œ‹ 0 >0 ๐œ‹๐‘ฆ>๐œ‹ ๐‘ฅ ๐‘˜ โˆ€ ๐‘˜ , contradiction. If unbounded, โˆƒ extreme ray ๐‘Ÿ ๐‘— with ๐œ‹ ๐‘Ÿ ๐‘— >0 (Thm 4.7), contradiction. Hence there does not exist such ๐‘ฆ, i.e. ๐‘„=๐‘ƒ. ๏ฟ Integer Programming 2017

11 Now consider projections of polyhedra and Weylโ€™s theorem.
Consider Primal-Dual pair of LP ๐‘ง= max ๐‘๐‘ฅ:๐‘ฅโˆˆ๐‘ƒ , ๐‘ƒ={๐‘ฅโˆˆ ๐‘… + ๐‘› :๐ด๐‘ฅโ‰ค๐‘} ๐‘ค= min ๐‘ข๐‘:๐‘ขโˆˆ๐‘„ , ๐‘„={๐‘ขโˆˆ ๐‘… + ๐‘š :๐‘ข๐ดโ‰ฅ๐‘} { ๐‘ฅ ๐‘˜ , ๐‘˜โˆˆ๐พ} extreme points of ๐‘ƒ, { ๐‘Ÿ ๐‘— , ๐‘—โˆˆ๐ฝ} extreme rays of ๐‘ƒ 0 { ๐‘ข ๐‘– , ๐‘–โˆˆ๐ผ} extreme points of ๐‘„, { ๐‘ฃ ๐‘ก , ๐‘กโˆˆ๐‘‡} extreme rays of ๐‘„ 0 Thm of the alternatives: โˆƒ ๐‘ฅ such that ๐‘ฅโ‰ฅ0, ๐ด๐‘ฅโ‰ค๐‘ โˆƒ ๐‘ข such that ๐‘ขโ‰ฅ0, ๐‘ข๐ดโ‰ฅ0, ๐‘ข๐‘<0 Pf) Consider primal-dual LP pair (P) max 0๐‘ฅ, ๐ด๐‘ฅโ‰ค๐‘, ๐‘ฅโ‰ฅ0 (D) min ๐‘ข๐‘, ๐‘ข๐ดโ‰ฅ0, ๐‘ขโ‰ฅ0 Integer Programming 2017

12 Pf) I) ๐‘ƒโ‰ โˆ… if and only if ๐‘ฃ๐‘โ‰ฅ0 โˆ€ ๐‘ฃโˆˆ ๐‘… + ๐‘š with ๐‘ฃ๐ดโ‰ฅ0 (from previous)
Thm 4.9: The following are equivalent: The primal problem is feasible, that is, ๐‘ƒโ‰ โˆ…; ๐‘ฃ ๐‘ก ๐‘โ‰ฅ0 for all ๐‘กโˆˆ๐‘‡. The following are equivalent when the primal problem is feasible: ๐‘ง is unbounded from above; โˆƒ ๐‘Ÿ ๐‘— of ๐‘ƒ with ๐‘ ๐‘Ÿ ๐‘— >0; the dual problem is infeasible, that is, ๐‘„=โˆ…. If the primal problem is feasible and ๐‘ง is bounded, then ๐‘ง= max ๐‘˜โˆˆ๐พ ๐‘ ๐‘ฅ ๐‘˜ =๐‘ค= min ๐‘–โˆˆ๐ผ ๐‘ข ๐‘– ๐‘ . Pf) I) ๐‘ƒโ‰ โˆ… if and only if ๐‘ฃ๐‘โ‰ฅ0 โˆ€ ๐‘ฃโˆˆ ๐‘… + ๐‘š with ๐‘ฃ๐ดโ‰ฅ0 (from previous) By Mink., ๐‘„ 0 = ๐‘ฃโˆˆ ๐‘… + ๐‘š :๐‘ฃ๐ดโ‰ฅ0 = ๐‘ฃโˆˆ ๐‘… + ๐‘š :๐‘ฃ= ๐œ‡ ๐‘ก ๐‘ฃ ๐‘ก , ๐œ‡ ๐‘ก โ‰ฅ0,๐‘กโˆˆ๐‘‡ . Hence ๐‘ฃ๐‘โ‰ฅ0 โˆ€ ๐‘ฃโˆˆ ๐‘„ 0 if and only if ๐‘ฃ ๐‘ก ๐‘โ‰ฅ0 โˆ€ ๐‘กโˆˆ๐‘‡. II) ๐‘ƒ= ๐‘ฅโˆˆ ๐‘… ๐‘› :๐‘ฅ= ๐œ† ๐‘˜ ๐‘ฅ ๐‘˜ + ๐œ‡ ๐‘— ๐‘Ÿ ๐‘— , ๐œ† ๐‘˜ =1, ๐œ† ๐‘˜ โ‰ฅ0, ๐œ‡ ๐‘— โ‰ฅ0 โ‰ โˆ…. ๐‘ง bounded if and only if ๐‘ ๐‘Ÿ ๐‘— โ‰ค0 โˆ€ ๐‘—โˆˆ๐ฝ. b โŸบ c: apply (I) to dual (in negation form) III) From strong duality and Minkowskiโ€™s theorem to ๐‘ƒ and ๐‘„. ๏ฟ Integer Programming 2017

13 Note: More general form of Minkowskiโ€™s thm (from IE531)
Decomposition Thm: Suppose ๐‘ƒ={๐‘ฅโˆˆ ๐‘… ๐‘› :๐ด๐‘ฅโ‰ค๐‘}โ‰ โˆ… Then ๐‘ƒ=๐‘†+๐พ+๐‘„, where ๐‘†+๐พ is the cone {๐‘ฅโˆˆ ๐‘… ๐‘› :๐ด๐‘ฅโ‰ค0} ๐‘†={๐‘ฅโˆˆ ๐‘… ๐‘› :๐ด๐‘ฅ=0} is the lineality space of ๐‘†+๐พ ๐พ is a pointed cone. ๐พ+๐‘„ is a pointed polyhedron. ๐‘„ is a polytope given by the convex hull of extreme points of ๐พ+๐‘„. Integer Programming 2017

14 Projection of a polyhedron:
Projection of (๐‘ฅ,๐‘ฆ)โˆˆ ๐‘… ๐‘› ร— ๐‘… ๐‘ on ๐ป={ ๐‘ฅ,๐‘ฆ :๐‘ฆ=0} is (๐‘ฅ,0). Consider projection of ๐‘ƒโŠ† ๐‘… ๐‘› ร— ๐‘… ๐‘ onto ๐‘ฆ=0 as a projection from the ๐‘ฅ,๐‘ฆ โˆ’space to the ๐‘ฅโˆ’space, denoted by proj ๐‘ฅ (๐‘ƒ). (๐‘ฅ such that (๐‘ฅ,๐‘ฆ)โˆˆ๐‘ƒ for some ๐‘ฆโˆˆ ๐‘… ๐‘ ) Thm 4.10: Let ๐‘ƒ= ๐‘ฅ,๐‘ฆ โˆˆ ๐‘… ๐‘› ร— ๐‘… ๐‘ :๐ด๐‘ฅ+๐บ๐‘ฆโ‰ค๐‘ , then proj ๐‘ฅ ๐‘ƒ = ๐‘ฅโˆˆ ๐‘… ๐‘› : ๐‘ฃ ๐‘ก ๐‘โˆ’๐ด๐‘ฅ โ‰ฅ0 โˆ€ ๐‘กโˆˆ๐‘‡ , where ๐‘ฃ ๐‘ก ๐‘กโˆˆ๐‘‡ are extreme rays of ๐‘„= ๐‘ฃโˆˆ ๐‘… + ๐‘š :๐‘ฃ๐บ=0 . Pf) ๐ป={(๐‘ฅ,๐‘ฆ)โˆˆ ๐‘… ๐‘› ร— ๐‘… ๐‘ :๐‘ฆ=0} โŸน Proj๐ป(๐‘ƒ) ={(๐‘ฅ,0)โˆˆ ๐‘… ๐‘› ร— ๐‘… ๐‘ :(๐‘ฅ,๐‘ฆ)โˆˆ๐‘ƒ for some ๐‘ฆโˆˆ ๐‘… ๐‘ } Hence, ๐‘ฅโˆˆ Proj๐ป(๐‘ƒ) โŸบ ๐บ๐‘ฆโ‰ค(๐‘โˆ’๐ด๐‘ฅ) feasible for given ๐‘ฅ โŸบ ๐‘ฃโ‰ฅ0, ๐‘ฃ๐บ=0, ๐‘ฃ ๐‘โˆ’๐ด๐‘ฅ <0 infeasible โŸบ โˆ€ ๐‘ฃโ‰ฅ0, ๐‘ฃ๐บ=0, we have ๐‘ฃ(๐‘โˆ’๐ด๐‘ฅ)โ‰ฅ0 โŸบ ๐‘ฃ ๐‘ก (๐‘โˆ’๐ด๐‘ฅ)โ‰ฅ0 for all ๐‘กโˆˆ๐‘‡ ( ๐‘ฃ ๐‘ก ๐ด๐‘ฅโ‰ค ๐‘ฃ ๐‘ก ๐‘) ๏‚“ Integer Programming 2017

15 For Thm 4.10, use the thm of the alternatives:
โˆƒ ๐‘ฅ such that ๐ด๐‘ฅโ‰ค๐‘ โˆƒ ๐‘ข such that ๐‘ขโ‰ฅ0, ๐‘ข๐ด=0, ๐‘ข๐‘<0 Pf) Consider primal-dual pair (P) max 0๐‘ฅ, ๐ด๐‘ฅโ‰ค๐‘ (D) min ๐‘ข๐‘, ๐‘ข๐ด=0, ๐‘ขโ‰ฅ0 Cor 4.11: Projection of a polyhedron is a polyhedron. Integer Programming 2017

16 If ๐ด: ๐‘š 1 ร—๐‘›, ๐ต: ๐‘š 2 ร—๐‘›, rational matrices and
Cor 4.12: If ๐‘ƒ={(๐‘ฅ,๐‘ฆ)โˆˆ ๐‘… ๐‘› ร— ๐‘… ๐‘ :๐ด๐‘ฅ+๐บ๐‘ฆโ‰ค๐‘} and ๐‘„= ๐‘ฅโˆˆ ๐‘… ๐‘› :๐ท๐‘ฅโ‰ค๐‘‘ , where ๐ท is ๐‘žร—๐‘›, then ๐‘„= proj๐‘ฅ(๐‘ƒ) if and only if: For ๐‘–=1,โ€ฆ๐‘ž, ๐‘‘ ๐‘– ๐‘ฅโ‰ค ๐‘‘ 0 ๐‘– is a valid inequality for ๐‘ƒ. For each ๐‘ฅ โˆ— โˆˆ๐‘„, โˆƒ ๐‘ฆ โˆ— such that ๐‘ฅ โˆ— , ๐‘ฆ โˆ— โˆˆ๐‘ƒ. Pf) I. is equivalent to ๐‘„โŠ‡ proj๐‘ฅ(๐‘ƒ). II is equivalent to ๐‘„โŠ† proj๐‘ฅ(๐‘ƒ). ๏ฟ Thm 4.13: (Affine Weylโ€™s theorem) (finitely generated โŸน finitely constrained) If ๐ด: ๐‘š 1 ร—๐‘›, ๐ต: ๐‘š 2 ร—๐‘›, rational matrices and ๐‘„= ๐‘ฅโˆˆ ๐‘… ๐‘› :๐‘ฅ=๐‘ฆ๐ด+๐‘ง๐ต, ๐‘˜=1 ๐‘š 1 ๐‘ฆ ๐‘˜ =1, ๐‘ฆโˆˆ ๐‘… + ๐‘š 1 ,๐‘งโˆˆ ๐‘… + ๐‘š 2 , Then ๐‘„ is a rational polyhedron. Pf) ๐‘„= proj๐‘ฅ(๐‘ƒ), where ๐‘ƒ={(๐‘ฅ,๐‘ฆ,๐‘ง)โˆˆ ๐‘… ๐‘› ร— ๐‘… + ๐‘š 1 ร— ๐‘… + ๐‘š 2 :๐‘ฅโˆ’๐‘ฆ๐ดโˆ’๐‘ง๐ต=0, ๐‘˜=1 ๐‘š 1 ๐‘ฆ ๐‘˜ =1} ๏ฟ (Recall that we used Fourier-Motzkin elimination in IE531.) Integer Programming 2017


Download ppt "Proving that a Valid Inequality is Facet-defining"

Similar presentations


Ads by Google