Antoine Drouart CEA Irfu/SPhN – DITANET Workshop 11.07 – 11.08.2011 – Sevilla  For charged particles  Transmission detectors 

Slides:



Advertisements
Similar presentations
Ion Beam Analysis techniques:
Advertisements

HEP Experiments Detectors and their Technologies Sascha Marc Schmeling CERN.
Experimental Particle Physics PHYS6011 Joel Goldstein, RAL 1.Introduction & Accelerators 2.Particle Interactions and Detectors (1/2) 3.Collider Experiments.
1 MUON TRACKER FOR CBM experiment Murthy S. Ganti, VEC Centre Detector Choice.
Radiation Detectors / Particle Detectors
Micro MEsh GASeous Detectors (MicroMegas)
Beam tests of Fast Neutron Imaging in China L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang 2, X.
Beijing, August 18, 2004 P. Colas - Micromegas for HEP 1 Recent developments of Micromegas detectors for High Energy Physics Principle of operationPrinciple.
Tracking detectors/1 F.Riggi.
Detector R&D: J-PARC-E16 K. Ozawa (Univ. of Tokyo) for the E16 collaboration.
Short ( and incomplete) characteristics of CVD diamond detectors Diamond as a detector material low dielectric constant low capacity low noise good heat.
Ionization. Measuring Ions A beam of charged particles will ionize gas. –Particle energy E –Chamber area A An applied field will cause ions and electrons.
Solid State Detectors- 5 T. Bowcock 2 Schedule 1Position Sensors 2Principles of Operation of Solid State Detectors 3Techniques for High Performance Operation.
Darsebury June - Lolly ACTAR. Darsebury June - Lolly Si – TOF/ Active Target Si - PSD Si – DE-E Si/CsI - Tracking SPIRAL2 NuStar A 50 keV.
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
N_TOF fission data of interest for ADS
experimental platform
A 4-PAD MicroMegas system for monitoring purpose at n_TOF facility (CERN) M. Sabaté-Gilarte 1,2 T. Papaevangelou 3, F. Gunsing 3, E. Berthoumieux 3, M.
Radiation therapy is based on the exposure of malign tumor cells to significant but well localized doses of radiation to destroy the tumor cells. The.
Carleton University A. Bellerive, K. Boudjemline, R. Carnegie, A. Kochermin, J. Miyamoto, E. Neuheimer, E. Rollin & K. Sachs University of Montreal J.-P.
Status of PNPI R&D for choice of the MUCH tracking base detector (this work is supported by INTAS) ■ Introduction ■ MICROMEGAS ■ GEM ■ MICROMEGAS+GEM ■
Simulation of the spark rate in a Micromegas detector with Geant4 Sébastien Procureur CEA-Saclay.
Fast Timing with Diamond Detectors Lianne Scruton.
Development of slowed down beams at GSI P.Boutachkov GSI Physics objectives Proposed solution Test experiments Future Test setup for slowed down beams.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
Neutron Structure Functions and a Radial Time Projection Chamber The Structure of the Neutron The BoNuS Experiment at CLAS A New Proton Recoil Detector.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
Development of a Time Projection Chamber Using Gas Electron Multipliers (GEM-TPC) Susumu Oda, H. Hamagaki, K. Ozawa, M. Inuzuka, T. Sakaguchi, T. Isobe,
abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1 ]  70% transmission SIS – FRS  ε trans transmission.
GEM: A new concept for electron amplification in gas detectors Contents 1.Introduction 2.Two-step amplification: MWPC combined with GEM 3.Measurement of.
Orsay, January 12, 2005P. Colas - Resistive anode Micromegas1 Dan Burke 1, P. Colas 2, M. Dixit 1, I. Giomataris 2, V. Lepeltier 3, A. Rankin 1, K. Sachs.
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
Experimental part: Measurement the energy deposition profile for U ions with energies E=100 MeV/u - 1 GeV/u in iron and copper. Measurement the residual.
BES-III Workshop Oct.2001,Beijing The BESIII Luminosity Monitor High Energy Physics Group Dept. of Modern Physics,USTC P.O.Box 4 Hefei,
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
R&D on complementary detectors and devices for nuclear structure and reaction mechanism studies R&D on complementary detectors and devices for nuclear.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. hashimoto, H. Tokieda, T. Tsuji, K. Kawase,
Rare Isotope Spectroscopic INvestigation at GSI. abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1.
Summer Student Session, 11/08/2015 Sofia Ferreira Teixeira Summer Student at ATLAS-PH-ADE-MU COMSOL simulation of the Micromegas Detector.
TPC/HBD R&D at BNL Craig Woody BNL Mini Workshop on PHENIX Upgrade Plans August 6, 2002.
Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,
1 Design of active-target TPC. Contents I.Physics requirements II.Basic structure III.Gas property IV.Electric field Distortion by ground Distortion of.
Lecture 3-Building a Detector (cont’d) George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
Christian Lippmann (ALICE TRD), DPG-Tagung Köln Position Resolution, Electron Identification and Transition Radiation Spectra with Prototypes.
T. Zerguerras- RD51 WG Meeting- CERN - February Single-electron response and energy resolution of a Micromegas detector T. Zerguerras *, B.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
1 Activation by Medium Energy Beams V. Chetvertkova, E. Mustafin, I. Strasik (GSI, B eschleunigerphysik), L. Latysheva, N. Sobolevskiy (INR RAS), U. Ratzinger.
CNS CVD Diamond S. Michimasa. Properties of diamond Extreme mechanical hardness and extreme high thermal conductivity Broad optical transparency in region.
The Micromegas detector on board two applications … DEMIN & R3B Ph.Legou DSM-IRFU-SEDI Commissariat à l’Energie Atomique (CEA), France Ph.Legou DSM-IRFU-SEDI.
Thorsten Lux. Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating 2 Gas (Mixture)
Performances of a GEM-based TPC prototype for the AMADEUS experiment Outline: GEM-TPC in AMADEUS experiment; Prototype design & construction; GEM: principle.
TPC R3 B R3B – TPC Philippe Legou Krakow, February nd
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. Hashimoto, H. Tokieda, T. Tsuji, S. Kawase,
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
Focal plane detector discussion Kwangbok Lee Low Energy Nuclear Science team Rare Isotope Science Project Institute for Basic Science July 11,
Performance of timing-RPC prototypes with relativistic heavy ions
大強度
Neutron Detection with MoNA LISA
Ionization detectors ∆
Development of Gas Electron Multiplier Detectors for Muon Tomography
Dan Burke1, P. Colas2, M. Dixit1, I. Giomataris2, V. Lepeltier3, A
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
1. Introduction Secondary Heavy charged particle (fragment) production
MWPC’s, GEM’s or Micromegas for AD transfer and experimental lines
Variable Mode High Acceptance Spectrometer
Design of active-target TPC
Semiconductor Detectors
Status and perspectives of the LNS-FRIBS facility
PHYS 3446 – Lecture #17 Wednesday ,April 4, 2012 Dr. Brandt
Presentation transcript:

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla  For charged particles  Transmission detectors  Event by event (≠ monitoring)

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla unknown distribution What? Determine the trajectories of ions before the interaction point  positions + time of flight Why measure the ion trajectory ? Information about the reaction process  angular distributions, velocity Identification of the particle  curvature radius in a magnetic field gives momentum Incomingbeam Target θ1θ1θ1θ1 Scattering angle Incident angle Position of vertex Velocity θ0θ0θ0θ0 (x 0,y 0 ) v0v0v0v0 perfect beam θ1θ1θ1θ1 With a perfect beam  track only the outgoing particles Need a transmission detector, with position and time measurement on an event by event basis

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Ion-matter interaction (Mainly electromagnetic) Energy losses ΔE Energy straggling  E Angular straggling  θ Charge exchange  Q enough to detect the ion BUT not too much, not to perturb its trajectory can be calculated and corrected in the active layer  gives the detection signal Stochastic processes  error on measurement ion before (θ i, E i, Q i ) ion after θ f = θ i +  θ E i = E i - ΔE +  E Q f = Q i +  Q active layer dead layer Stochastic process  charge state distribution for E i < 50MeV/u

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Losses, Straggling and Detection Set-up 40 Ca e.g. GSI : 3 to 150 A.MeV Material500MeV/u50MeV/u5MeV/u 2mm BC400 (scintillating plastic) ΔE = 227MeV  E = 0.08MeV/u  θ = 0.4mrad Stopped ! Rg=70µm 0.2mm Silicon (solid state detector) Stopped ! Rg=46µm 1cm Ar at 1bar (gas detector) Stopped ! Rg=7mm 10cm C 4 H 10 at 10mbar (low pressure detector) µm Mylar © foil (window) µm carbon foil (emissive foil)

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Relativistic regime : 500MeV/u Diamond tracking for R 3 FAIR (2013+) The super FRS will provide heavy ions with ~700MeV/u Measurement of all kinematic variables in a HI reaction Different tasks: High resolution tracking in the super FRS, radiation hard (SFRS) 10 6 cm -1 s -1 2 x TOF (SFRS – target) (reaction products) Sources: R.Gernhäuser (TU-München)

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Short characteristics of CVD diamond detectors Diamond as a detector material low capacitancelow capacitance low noiselow noise good heat conductivitygood heat conductivity ( 5 x higher than Cu ) ( 5 x higher than Cu ) large band gap of 5.5 eVlarge band gap of 5.5 eV small signal (< half of a Si of similar size)small signal (< half of a Si of similar size) high charge carrier velocity saturationhigh charge carrier velocity saturation fast pulse response timefast pulse response time Diamond Crystal productionDiamond Crystal production chemical vapour deposition (CVD) commercial productioncommercial production polycrystalline diamonds (PCD)polycrystalline diamonds (PCD) – thickness µm – max size ~ 5x5cm2 – price ? (100 euro/det.) single crystal diamond (SCD)single crystal diamond (SCD) – smaller (max 25x25 mm2) – better performance (energy resolution) – more expensive (5xPCD) Diamond detectors performance very fast timingvery fast timing pulse risetime: 200 ps width: 2ns (PCD) 5ns (SCD) operating voltage 1 V/  moperating voltage 1 V/  m radiation hardnessradiation hardness -Tests with 2x10 15 p/cm 2 did not show any significant deterioration of a sig./noise -pumping effect (PCD) : improvement with increasing dose position resolutionposition resolution below 10  m can be achieved with strip detectors X and Y efficiencyefficiency 70%PCD-100% SCD Diamonds as TOF detectorsDiamonds as TOF detectors tests with 1GeV/u U beam resulted in TOF of  =20 ps Cr-Au foil ~0.1  m Source: M. Gorska (GSI)

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Virtues & Flaws of diamond detectors - Radiation hard (>2.15p/cm 2 ) - low occupation time  high counting rate 10 7 pps - ultra fast signal  time resolution σ = 30ps - reasonable energy resolution σ = 17keV (single crystal)  - small size, biggest in use 60x40mm 2 [PCD, Cave GSI] - thickness > 50µm  restricted to high energy - require high speed electronics - single crystals have better performances but are smaller (few mm 2 )  Mosaic detector ? are smaller (few mm 2 )  Mosaic detector ?  very promising technique, lot of developments

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Relativistic regime : 500MeV/u KaBes on the NA48 CERN (in use) The micromegas TPC Study of CP violation by the simultaneous detection of K + and K - Need to measure trajectories to obtain the momentum of individual Kaons (~60GeV/c) B. Peynaud, NIM A 535 (2004) 427

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Gaz (Here: Ne(79%)+C2H6(11%)+CF4(10%) ) Drift (-HT 2) Mesh (-HT 1) e-e-e-e- Amplification gap < 100  m E ~ 50 kV/cm E ~ 900V/cm strips Time projection Chamber with Micromegas Drift Region h=6cm v e- = 8cm/µs Drift time = Y position charge readout i+i+i+i+ the electrons have a constant velocity in the drift zone A fast avalanche occurs in the short gap  fast electron signal  no signal from the drifting ions because of the shielding mesh ionizationpoint Each strip gives an independent time signal  high counting rate 2 orthogonal detectors required to have X and Y

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Performances Time resolution = 0.7 ns (  ) Spatial res. of 70  m 40 MHz, expected up to 1GHz Efficiency close to 100 % Driftfield Amplificationregion KaBes drift chambers for real

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Virtues & Flaws of Micromegas TPC - Radiation hard - Very high counting rate : up to 10 9 pps ! -Very good position resolution < 100µm -Bulk micromegas : robust and easy to build  - 1 direction only - Moderate energy resolution (~10%) - Need an independent time signal for trigger Micromegas gas detectors have a wide range of applications since the “drift zone” can include a converter that produce electrons from any kind of initial radiation e.g. piccolo micromegas for neutron detection J. Pancin & al. NIMA 592 (2008) 104

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Relativistic muons GEMs in the COMPASS CERN Gas Electron Multipliers 140µm 70µm 50µm Copper  Kapton  Copper  Ar + CO 2 mixture Readout  X and Y

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Virtues & Flaws of GEM -Radiation hard -Large size (>1m 2 ) - Very high counting rate : 10 5 Hz/mm 2 - Excellent position resolution σ ~ 40µm  -Moderate gain (~30-50) but several stages can be added -Dead zones due to spacers -Poor energy resolution (~27%) -High capacitance  strong discharges Spherical GEM for parallax correction !

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Intermediate energy : 50MeV/u CATS detectors at GANIL, Caen (in use) In Beam low pressure MWPC Fragmentation 12 C  10,11 C+… Target point 11 C identification with a spectrometer Beam proton target (polypropylene) recoiling p recoiling p TrackingDetectors

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla BEAM 2 nd tracking detector Target 7cm

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Effect of trajectory reconstruction C. JOUANNE (SPHN) PHD C+p  11 C+p’ 40.6 MeV/u 11 C Proton E p ΘpΘp E* Without Beam Tracking With Beam Tracking Large Beam emittance ~10π mm.mrad (hor+vert) 1.5mupstream 0.5mupstream reconstructed on target

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Virtues & Flaws of in-beam low pressure MWPC - fast signal  good time resolution σ = 100ps - good position resolution σ = 100µm - high detection efficiency (~100%) - large size available (>100cm 2 ) - cheap and can be repaired - Thin : ~5µm of Mylar (from windows and cathodes)  - vulnerable to discharge : rate ~ 10 5 pps - 1.5µm windows required  E ion > 10MeV/u - fragile and delicate to use

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Very low Energy regime : 5MeV/u e.g.: SPIRAL/SPIRAL2 radioactive beams (in use / 2014) Beam Targetpoint Tracking at Focal plane

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Ions Emissive foil (Mylar+Al, Carbon) Secondary electrons E B Electron detector : - -Micro-channel plate - -Gaseous detector - -Scintillator - -… Emissive foil Detectors Very low thickness < 1µm foil Secondary emission - low energy electrons (few eV) - depends on the material (CsI…) - surface process - proportional to dE/dx

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Micro Channel Plates 0.4-3mm thickness ϕ =10-40µm <10cm Borosilicate MCP developments 20x20cm 2 ! - Superposition of resistive and photo-emissive (Al 2 O 3 ) atomic layers single MCP paired MCP - Similar gain as standard MCP 2ns - Fast signals O.H.W. Siegmund & al. NIMA 639 (2011) Poor uniformity (±10%)

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Low Pressure Gas Detector Focal plane size : 10 x 40 cm 2 A. Drouart & al, NIM A579, ( 2007) p1090

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla - Detector as thin as it can be ( down to 20µg/cm 2 ) - Fast signal  good time resolution σ < 100ps  -Poor sensitivity to high energy, light ions -Moderate position resolution σ~600µm -Require high electric field and/or magnetic field Characteristics depend on the secondary electron detector - gas detector : large size - micro channel plate : high counting rate - scintillating plastic : easy to use Virtues & Flaws of Emissive foil detectors

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Beam tracking requires  low thickness not to perturb the incoming ion  good position and time resolution  cope with high flux of particles TechniqueRegime MeV/u σ(time) ps σ(pos.) µm Max rate Hz Diamonds (strip) 10 7 Atm. pressure500700< Low pressure Emissive foils Conclusions

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla  Enjoy the next talks !

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Energy loss : Bethe-Bloch formula dE/dx = k x (ρZ/A) x (z/β) 2 x (correction factors)  fairly known… Losses & Straggling : estimations Projectile charge state and velocity Material charge density Projectile charge, mass and velocity Material atomic number Charge exchange Also very empirical… V.S. Nikolaev et I.S. Dimitrev Phy Let 28A (1968) 277 K. Shima & al., At Data and Nuc Data Tables 34 (1986)357 et 51 & (1992) 173 K. Shima, N. Kuno, M. Yamanouchi Phys Rev A 40 (1989) R.N. Sagaiadak, A.V. Yeremin NIM B93 (1994) 103 Stragglings Empirical formulae Energy: D. Guillemaud-Mueller & al, IEEE 33 (1986)343 Angle: R. Anne & al., NIM B 34 (1998) 295 = 0.250Z x (Z+1) x (z/A) 2 /β 4 [T. Joy, NIM 106 (1973) 237] = 0.250Z x (Z+1) x (z/A) 2 /β 4 [T. Joy, NIM 106 (1973) 237] Monte Carlo Code SRIM (Ziegler & al.)

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Current developments : Larger Area Single crystal 25.4 mm 4 prototypes produced 2 operational lithography under control Frontside: 128 strips 170  m wide 20  m gap Backside: 16 strips M.Boehmer, TU Muenchen, PhD Thesis (2006)

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Se - D in VAMOS

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Results of tests & experiments IonsE(MeV/A)dE/dx(MeV/mm)Efficiency Time resolution (FWHM ps) Heavy Fission frag. Average Z~ %250 Light fission frag. Average Z~ % Ge % Mg % C %1000 Alpha %(70%*)1200* Conclusions -Detector able to cope with a few 10 3 pps (limited by electronics dead time) - theoretical limit ~10 7 pps or more ? -Spatial resolution : 1-2mm -Time resolution : 1.5ns (light ions) to 300ps (heavy ions Z>40) -Total thickness in the beam : 0.6μm Mylar foil = 75μg/cm 2

Antoine Drouart CEA Irfu/SPhN – DITANET Workshop – – Sevilla Residual gas detectors For a vacuum in the beam line ~10 -6 mbar 40 3A.MeV looses 23eV/cm  need higher pressure ~10 -3 mbar but difficult to contain but difficult to contain Can be replaced by a more Sensitive/rapiddevice Existing residual gas -6 mbar with MCP (Barabin & al. EPAC2004)