Nuclear Chemistry Chapter 23.

Slides:



Advertisements
Similar presentations
Nuclear Chemistry Chapter 23
Advertisements

Chapter 21: Nuclear Chemistry Chemistry 1062: Principles of Chemistry II Andy Aspaas, Instructor.
CHEM 5013 Applied Chemical Principles Chapter Fourteen Professor Bensley Alfred State College.
1 Nuclear Chemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Nuclear Chemistry Chapter Nuclear Chemistry Nuclear Chemistry- the study of reactions involving changes in atomic nuclei. Importance Disadvantages.
NUCLEAR CHEMISTRY By: Stephanie Chen and Stephanie Ng.
2 X A Z Mass Number Atomic Number Element Symbol Atomic number (Z) = number of protons in nucleus Mass number (A) = number of protons + number of neutrons.
Nuclear Reactions Emissions, Balancing, and predicting decays of Nuclear Reactions.
Chapter 9 Nuclear Radiation
Nuclear Chemistry.
Nuclear Chemistry Chapter 19
Nuclear Chemistry. Radioactivity One of the pieces of evidence for the fact that atoms are made of smaller particles came from the work of Marie Curie.
Nuclear Chemistry Chapter 23.
1 Nuclear Chemistry Chapter 23 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 CHAPTER 23 NUCLEAR CHEMISTRY. 2 THE NATURE OF RADIOACTIVITY.
Chemistry.
Nuclear Chemistry Chapter 22. Notation The Nucleus Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons.
Nuclear Chemistry Chapter 21 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Nuclear Chemistry Radioactivity Antoine Henri Becquerel ( ) Discovered radioactivity accidentally while experimenting with photographic film.
Nuclear Chemistry Chapter 18. Radioactivity One of the pieces of evidence for the fact that atoms are made of smaller particles came from the work of.
Unit 7: Nuclear Chemistry Colin Johnson and George Fourkas.
Atomic Stability. Isotopes Isotopes are atoms of an element that have different numbers of neutrons in their nucleus. Cu Copper – 63 OR Copper.
Chapter 9 Nuclear Radiation
Chapter 9 Nuclear Radiation
Nuclear Chemistry Ch. 21. Radioactive Emissions Alpha decay – He nucleus What product is formed when radium-226 undergoes alpha decay? What element undergoes.
Nuclear Chemistry Chapter 21.
Basic Nuclear Chemistry. Line vs. Continuous Spectra.
Williamsburg High School for Architecture and Design Mr. Quinn and Ms. Tom 9/30/13.
Known nuclides PROPERTIES OF FUNDAMENTAL PARTICLES Particle Symbol Charge Mass (x Coulombs) (x kg) Proton P Neutron N.
Nuclear Chemistry Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.Copyright © The McGraw-Hill Companies, Inc.
Chapter 15 Nuclear Radiation
Nuclear Chemistry Chapter 23 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
CHAPTER 22 Nuclear Chemistry
Nuclear Chemistry Chapter 23 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint Lecture Presentation.
Nuclear Chemistry Chapter 23 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Nuclear Chemistry Chapter 21 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 21 Nuclear Chemistry
Nuclear Physics.
General, Organic, and Biological Chemistry Fourth Edition Karen Timberlake 4.2 Nuclear Reactions Chapter 4 Nuclear Chemistry © 2013 Pearson Education,
Types of Radioactive Decay Kinetics of Decay Nuclear Transmutations
Nuclear Chemistry. ATOMIC REVIEW: Atomic number = # of protons # of neutrons = mass # - atomic # protons & neutrons are in the nucleus.
Chapter 23 N UCLEAR C HEMISTRY Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Nuclear Chemistry Chapter 23 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint Lecture Presentation.
Nuclear Chemistry Chapter 23 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
 Nuclear Chemistry. Nuclear Vs. Chemical Reactions  Nuclear reactions involve a change in an atom’s nucleus, usually producing a different element.
Nuclear Chemistry Chapter 19. Define radioactivity. Complete half-life calculations. Complete and interpret nuclear reactions. Identify types of radioactive.
Ch 19 Nuclear Chemistry.  Know how nuclear equations are balanced: The same sums of both mass and atomic numbers appear on both sides of the equation.
CHAPTER FIVE(23) Nuclear Chemistry. Chapter 5 / Nuclear Chemistry Chapter Five Contains: 5.1 The Nature of Nuclear Reactions 5.2 Nuclear Stability 5.3.
Nuclear Chemistry Chapter 22.
Nuclear Chemistry Chapter 23
5.2 Nuclear Reactions In the nuclear equation for alpha decay, the mass number of the new nucleus decreases by 4 and its atomic number decreases.
Nuclear Chemistry Chapter 23.
Nuclear Chemistry Chapter 23
Nuclear Chemistry Chapter 19
Радиохемија- ги проучува ефектите на честичките (протоните, неутроните,...што се наоѓаат во ЈАДРАТА на атомите од елементите.
Nuclear Chemistry Chapter 21.
I-123 used for brain imaging
Nuclear Chemistry Chapter 21.
Chapter 9 Nuclear Radiation
Chapter 21 Nuclear Radiation
Nuclear Chemistry Chapter 23
Chapter 21 Nuclear Chemistry
Nuclear Stability and Decay
Nuclear Chemistry Chapter 23
Nuclear Chemistry Chapter 21 Jules Nono, Ph.D..
Nuclear Decay.
Nuclear Chemistry Chapter 21.
Nuclear Chemistry Chapter 21
Nuclear Chemistry Chapter 23
Nuclear Chemistry Chapter 23
Presentation transcript:

Nuclear Chemistry Chapter 23

X Atomic number (Z) = number of protons in nucleus Mass number (A) = number of protons + number of neutrons = atomic number (Z) + number of neutrons Mass Number X A Z Element Symbol Atomic Number 1p 1 1H or proton 1n neutron 0e -1 0b or electron 0e +1 0b or positron 4He 2 4a or a particle A 1 1 4 Z 1 -1 +1 2 23.1

Balancing Nuclear Equations Conserve mass number (A). The sum of protons plus neutrons in the products must equal the sum of protons plus neutrons in the reactants. 1n U 235 92 + Cs 138 55 Rb 96 37 + 2 235 + 1 = 138 + 96 + 2x1 Conserve atomic number (Z) or nuclear charge. The sum of nuclear charges in the products must equal the sum of nuclear charges in the reactants. 1n U 235 92 + Cs 138 55 Rb 96 37 + 2 92 + 0 = 55 + 37 + 2x0 23.1

212Po decays by alpha emission 212Po decays by alpha emission. Write the balanced nuclear equation for the decay of 212Po. 4He 2 4a or alpha particle - 212Po 4He + AX 84 2 Z 212 = 4 + A A = 208 84 = 2 + Z Z = 82 212Po 4He + 208Pb 84 2 82 23.1

23.1

Nuclear Stability and Radioactive Decay Beta decay 14C 14N + 0b + n 6 7 -1 Decrease # of neutrons by 1 40K 40Ca + 0b + n 19 20 -1 Increase # of protons by 1 1n 1p + 0b + n 1 -1 Positron decay 11C 11B + 0b + n 6 5 +1 Increase # of neutrons by 1 38K 38Ar + 0b + n 19 18 +1 Decrease # of protons by 1 1p 1n + 0b + n 1 +1 n and n have A = 0 and Z = 0 23.2

Nuclear Stability and Radioactive Decay Electron capture decay 37Ar + 0e 37Cl + n 18 17 -1 Increase # of neutrons by 1 55Fe + 0e 55Mn + n 26 25 -1 Decrease # of protons by 1 1p + 0e 1n + n 1 -1 Alpha decay Decrease # of neutrons by 2 212Po 4He + 208Pb 84 2 82 Decrease # of protons by 2 Spontaneous fission 252Cf 2125In + 21n 98 49 23.2

positron decay or electron capture n/p too large beta decay X n/p too small positron decay or electron capture Y 23.2

Kinetics of Radioactive Decay [N] = [N]0exp(-lt) ln[N] = ln[N]0 - lt [N] ln [N] 23.3

Radiocarbon Dating 14N + 1n 14C + 1H 14C 14N + 0b + n t½ = 5730 years 6 14C 14N + 0b + n 6 7 -1 t½ = 5730 years Uranium-238 Dating 238U 206Pb + 8 4a + 6 0b 92 -1 82 2 t½ = 4.51 x 109 years 23.3

Nuclear Fission 235U + 1n 90Sr + 143Xe + 31n + Energy 92 54 38 Energy = [mass 235U + mass n – (mass 90Sr + mass 143Xe + 3 x mass n )] x c2 Energy = 3.3 x 10-11J per 235U = 2.0 x 1013 J per mole 235U Combustion of 1 ton of coal = 5 x 107 J 23.5

Representative fission reaction Nuclear Fission Representative fission reaction 235U + 1n 90Sr + 143Xe + 31n + Energy 92 54 38 23.5

Nuclear Fission Nuclear chain reaction is a self-sustaining sequence of nuclear fission reactions. The minimum mass of fissionable material required to generate a self-sustaining nuclear chain reaction is the critical mass. Non-critical Critical 23.5

Annual Waste Production Nuclear Fission 35,000 tons SO2 4.5 x 106 tons CO2 1,000 MW coal-fired power plant 3.5 x 106 ft3 ash Annual Waste Production 1,000 MW nuclear power plant 70 ft3 vitrified waste 23.5

Radioisotopes in Medicine Research production of 99Mo 98Mo + 1n 99Mo 42 Commercial production of 99Mo 235U + 1n 99Mo + other fission products 92 42 Bone Scan with 99mTc 99Mo 99mTc + 0b + n 42 43 -1 t½ = 66 hours 99mTc 99Tc + g-ray 43 t½ = 6 hours 23.7