Topological defects creation at fast transition: Kibble mechanism and Zurek scenario Experiments with neutrons: Vortex creation in 3He+n reaction Dark.

Slides:



Advertisements
Similar presentations
MICROKELVIN: JRA3 Fundamental physics for the study of cosmological analogues in the laboratory.
Advertisements

Femtosecond lasers István Robel
MACHe3: Prototype of a bolometric detector based on superfluid 3 He for the search of non-baryonic Dark Matter C. Winkelmann J. Elbs E. Collin Yu. Bunkov.
Bose-Einstein Condensation Ultracold Quantum Coherent Gases.
University of Newcastle, UK Collisions of superfluid vortex rings Carlo F. Barenghi Nick Proukakis David Samuels Christos Vassilicos Charles Adams Demos.
Bose-Einstein Condensation and Superfluidity Gordon Baym University of Illinois, Urbana January 2004 東京大学.
The PICASSO experiment - searching for cold dark matter
X-ray Astronomy Lee Yacobi Selected Topics in Astrophysics July 9.
Reflectivity Measurements of Critical Materials for the LUX Dark Matter Experiment Theory My experiment was a cyclic process involving software, engineering,
Dark Matter Searches with Dual-Phase Noble Liquid Detectors Imperial HEP 1st Year Talks ‒ Evidence and Motivation ‒ Dual-phase Noble Liquid Detectors ‒
Particle Physics and Cosmology
Dark Matter: A Mini Review Jin Min Yang Hong Kong (杨 金 民)(杨 金 民) Institute of Theoretical Physics Academia Sinica, Beijing.
MAGNETIC MONOPOLES Andrey Shmakov Physics 129 Fall 2010 UC Berkeley.
Nuclear Physics: Radiation, Radioactivity & its Applications.
Quantum Turbulence and (some of) the Cosmology of Superfluid 3He
The Dark Universe Progress, Problems, and Prospects Jonathan Feng University of California, Irvine APS April Meeting, Denver 1 May 2004.
The latest experimental evidence suggests that the universe is made up of just 4% ordinary matter, 23% cold dark matter and 73% dark energy. These values.
Yu. M. Bunkov H. Godfrin E. Collin A.S. Chen D. Cousins R. Harakaly S. Triqueneaux J. Elbs P. Hunger G. E. Volovik J. Sauls J. Parpia W. Halperin Yu. M.
Make your own Blue Matter – In Principle and in Practice Karlheinz Meier Kirchhoff-Institut für Physik Astronomisches Kolloquium Heidelberg 2010.
Detectors The energy loss of particles in matter can be used detect and identify those particles. There are different types of “detectors”: - Gas-filled.
 Collaboration with Prof. Sin Kyu Kang and Prof. We-Fu Chang arXiv: [hep-ph] submitted to JHEP.
What’s the Matter? With Matter Matter is the Stuff Around You!
Current “Hot” Areas of Research in Physics. Mature Physics and Hot Physics.
Physics at the High Energy Frontier J. Hewett PANIC 2005.
Yu. Bunkov E. Collin J. Elbs H. Godfrin The status of new Dark Matter project ULTIMA Yuriy M. Bunkov C R T B T – C N R S, Grenoble, France Cosmology in.
A Direction Sensitive Dark Matter Detector
The Dark Side of the Universe What is dark matter? Who cares?
Tools for Nuclear & Particle Physics Experimental Background.
Thermal Boundary Resistance of the Superfluid 3 He A-B Phase Interface D.I. Bradley S.N. Fisher A.M. Guénault R.P. Haley H. Martin G.R. Pickett J.E. Roberts.
3 He NMR in Aerogel Yu. Bunkov H. Godfrin E. Collin A.S. Chen D. Cousins R. Harakaly S. Triqueneaux J. Sauls J. Parpia W. Halperin Yu. Mukharskiy V. Dmitriev.
GERMANIUM GAMMA -RAY DETECTORS BY BAYAN YOUSEF JARADAT Phys.641 Nuclear Physics 1 First Semester 2010/2011 PROF. NIDAL ERSHAIDAT.
Status of the NO ν A Near Detector Prototype Timothy Kutnink Iowa State University For the NOvA Collaboration.
Large Area Microcalorimeters of the Diffuse X-ray Background Sarah Bank Towson University August 5, 2004.
Cosmology in superfluid 3 He Yuriy M. Bunkov C R T B T – C N R S, Grenoble, France.
Dark Matter Particle Physics View Dmitri Kazakov JINR/ITEP Outline DM candidates Direct DM Search Indirect DM Search Possible Manifestations DM Profile.
DARK MATTER CANDIDATES Cody Carr, Minh Nguyen December 9 th, 2014.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
GC, 08/2015 ULT Grenoble group Probing mesoscopic lengthscales in (super)fluid 3 He Funding: E. Collin H. Godfrin, A. Fefferman, O. Maillet, M. Defoort,
Poster Design & Printing by Genigraphics ® Neutrino Interactions Studying the properties of neutrinos will shed light on the origin of the.
2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt 2 pt 3 pt 4 pt 5 pt 1 pt States of Matter Kinetic Theory.
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
A Lightning Review of Dark Matter R.L. Cooper
Theoretical Issues in Astro Particle Physics J.W. van Holten April 26, 2004.
Yuriy M. Bunkov CRTBT - CNRS, Grenoble, France Magnetic Superfluidity (from HPD to Q – ball)
Determination of activity of 51 Cr source on gamma radiation measurements V.V.Gorbachev, V.N.Gavrin, T.V.Ibragimova, A.V.Kalikhov, Yu.M.Malyshkin,A.A.Shikhin.
Neutrino detectors Basic features: 1) Very small cross-sections of interactions → very big volumes of detectors 2) Very effective shielding → underground.
Composition Until 30 years ago, we thought all matter was “baryonic” matter (protons, neutrons, electrons). Now: 4.6% is baryonic matter 95% is non-baryonic.
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
Dark Matter cannot be seen directly with telescopes; it neither emits nor absorbs light; estimated to constitute 84.5% of the total matter in the universe.
Low scale gravity black holes at LHC Enikő Regős ( CERN )
Gregory Gabadadze (NYU, CCPP) with R. A. Rosen, JCAP, JHEP 08,09 D. Pirtskhalava, JCAP 09.
Quantum Turbulence in Superfluid 3 He-B at Ultra Low Temperatures. D.I.Bradley D.O.Clubb S.N.Fisher A.M.Guenault A.J.Hale R.P.Haley M.R.Lowe C.Mathhews.
Scintillating Bubble Chambers for Direct Dark Matter Detection Jeremy Mock On behalf of the UAlbany and Northwestern Groups 1.
Future Opportunities in Particle Physics Barry Barish Caltech DPF Meeting 13-Aug-2011 ILC.
WIMPs Direct Search with Dual Light-emitting Crystals Xilei Sun IHEP International Symposium on Neutrino Physics and Beyond
Mike Cruise University of Birmingham Searches for very high frequency gravitational waves.
Muons in condensed matter research Tom Lancaster Durham University, UK.
Superfluidity and Quantum Vortices. Outline of the presentation Bose-Einstein Condensation Superfluidity Quantum Vortix.
MoNA detector physics How to detect neutrons. Thomas Baumann NSCL.
Exotic turbulence opportunities in superfluid helium
PAN-2013: Radiation detectors
Non-Baryonic Dark Matter: From the CMB and axial direct detection
Lecture II: Dark Matter Candidates and WIMPs
dark matter Properties stable non-relativistic non-baryonic
Bose-Einstein Condensation Ultracold Quantum Coherent Gases
Chapter 3 States of Matter.
On the cosmic scale: Stars density  Interstellar Space  temperature
Bose-Einstein Condensation and Superfluidity
David W. Miller APS Apker Award 8 September, 2005
The Estimated Limits For A 5g LE-Ge Detector
Presentation transcript:

Topological defects creation at fast transition: Kibble mechanism and Zurek scenario Experiments with neutrons: Vortex creation in 3He+n reaction Dark matter search Muons and electrons scintillation A-B transition in 3 He Aurora de Venice versus Baked Alaska Q-ball in 3 He-B Persistent induction signal COSLAB and TOPDIF Grenoble connection Yuriy M. Bunkov C R T B T – C N R S, Grenoble, France

E A e i  Suprconducters, 4 He, 1/4

4 He experiment: Lancaster University Fast pressure release. P.C.Hendry, N.S Lawson, R.A.M. Lee, P.V.E. McClintock, C.H.D. Williams, Nature, 368, 315 (1994) T P Superfluid Solid Liquid No conformation at better prepared experiments 2K 3 He experiments: Lancaster Grenoble and Helsinki fast cooling after a localise heating from 3 He neutron nuclear reaction n + 3 He = p + 3 H keV C. Bauerle, Yu.M.Bunkov, S.N.Fisher, H. Godfrin, G.R.Pickett, Nature, 382, 332 (1996) V.M.H. Ruutu, V.B.Eltsov, A.J.Gill, T.W.B. Kibble, M. Krusius, Yu.G. Makhlin, B. Placcais, G.E. Volovik, W. Xu, Nature, 382, 334, (1996) P T Solid Liquid Superfluid B A Helsinki Grenoble + rotation 1mK D.I. Bradley, Yu.M.Bunkov, D.J.Cousins, M.P.Enrico,S.N.Fisher, M.R.Follows, A.M.Guénault, W.M.Hayes, G.R.Pickett, T.Sloan, Phys. Rev. Lett., v. 75. p. 1887, (1995)

Yuriy M. Bunkov Henri Godfrin Eddy Collin Matty Krusius Shaun Fisher Derek J. Cousins Cristopher. Bäuerle Ann-Sophie Chen Clemens Winkelmann Johannes Elbs

Superfluid 3 He bolometry

n + 3 He = p + 3 H keV

scintillation Grenoble 1995

scintillation Grenoble 1995 Theory: V.B. Eltsov, M. Krusius, G.E. Volovik Progress Low Temp Phys 2005

scintillation Grenoble 1995 Theory: V.B. Eltsov, M. Krusius, G.E. Volovik Progress Low Temp Phys 2005 Grenoble 2004

scintillation Grenoble 2004 Grenoble 1995 Theory: V.B. Eltsov, M. Krusius, G.E. Volovik Progress Low Temp Phys 2005 Grenoble 2005

 1/√T Bolometric calibration by pulsed heating A

G.M.SeidelG. R. Pickett H. Godfrin In 3He + n reaction 9% +- 1% of energy going for scintillation

From the fit, the energy emitted into a solid angle of 4  steradians is 87 keV, or 24% of the total energy of the 364 keV electron. In contrast, for an alpha particle stopped in helium we found, upon correcting for reflectivity, that only 10% of the initial energy of the particle is emitted as uv radiation. Journal of Low Temperature Physics, Vol. 113, 5/6, 1998

scintillation Grenoble 2004 Grenoble 1995 Theory: V.B. Eltsov, M. Krusius, G.E. Volovik Progress Low Temp Phys 2005 Grenoble 2005

Analysis and simulation LPSC (GEANT4) Detection of cosmic muons: good agreement experience/simulation if f UV (muons) ≈ 25 %

coincidence W mes (Hz) time (s) W(t) (mHz) temps (s) 10 keV Time (s)

cell A (without source) cell B (with source) Electron detection spectrum resolution of low energy emission spectrum of 57 Co Comparison to 14 keV peak with bolometric calibration  Energy deficit of f UV (e -,14keV)≈265% UV Scintillation S/B>5 Analysis LPSC, d5, B=100 mT, W0=430 mHz

The idea : Use the Bose –Einstein condensed coherent quantum state of superfluid 3 He at a limit of extremely low temperatures as a sensitive medium for the direct bolometric search of non-baryonic Dark Matter First suggestion G.R.Pickett in Proc. «Second european worshop on neutrinos and dark matters detectors», ed by L.Gonzales-Mestres and D.Perret-Gallix, Frontiers, 1988, p Yu.Bunkov, S.Fisher, H.Godfrin, A.Guenault, G.Pickett. in Proc. « International Workshop Superconductivity and Particles Detection (Toledo, 1994)», ed. by T.Girard, A.Morales and G.Waysand. World Scientific, p Ultra Low Temperature Instrumentation for Measurements in Astrophysics

Bose – Einstein condensed coherent quantum state with rear gas of collective excitations. At about 100 mK at 0.1 cm3 remains At about 100 mK at 0.1 cm3 remains only 10 keV from the level of absolute zero of temperature. Temperature is the density of quasiparticles, that measured directly by damping of mikro vibrating wire. The deposited energy is intimately associated with the 3He nuclear. There is no isolated nuclear thermal bath, separated from electronic and phononic subsystems!

Candidates What is the dark matter made of ? The non-baryonic candidate zoo Gianfranco Bertonea, Dan Hooperb, Joseph Silkb, Physics Reports 405 (2005) 279–390 Standard Model neutrinos < 0.07 Sterile neutrinos (without Standard Model weak interactions) Axions Introduced in an attempt to solve the problem of CP violation in particle physics Supersymmetric candidates Neutralinos WIMP Sneutrinos (superpartners of the Standard Model neutrinos in supersymmetric models) Gravitinos (superpartners of the graviton in supersymmetric models.) Axinos (superpartner of the axion,) Light scalar dark matter (fermionic dark matter candidates) Dark matter from little Higgs models Kaluza–Klein excitations of Standard Model fields which appear in models of universal extra dimensions Superheavy dark matter called Wimpzillas, Q-balls, mirror particles, CHArged Massive Particles (CHAMPs), self interacting dark matter, D-matter, cryptons, superweakly interacting dark matter, brane world dark matter, heavy fourth generation neutrinos, etc.

100g 3 He detector Spin dependent interaction For spin dependent interaction 100g 3 He = 30 kg Ge

scintillation Grenoble 2004 Grenoble 1995 Theory: V.B. Eltsov, M. Krusius, G.E. Volovik Progress Low Temp Phys 2005 Grenoble 2005

P T Solid Liquid Superfluid B A Helsinki Grenoble + rotation 1mK 70  m10  m 1  m p 3H-3H- Meyer, Sloan, JLTP 1998 D(0bar) = 21 cm 2 /s; R=27  m D(19bar) = 0.94 cm 2 /s; R=12  m

E A e i  Suprconducters, 4 He, A ik e i  3 He, Universe A ik ik Bunkov and Timofeevskaya modification of Kibble-Zurek theory PRL He-A Inflation of B phase in the space of A phase Transition triggered by radiation (Osheroff) “Baked Alaska” due to Leggett does not work Volovik suggestion, LT, Praga, 1996

18 D manifold B P T Solid Liquid Superfluid B A A – B transition

P T Solid Liquid Superfluid B A A – B transition