Interference Avoidance and Control Ramki Gummadi (MIT) Joint work with Rabin Patra (UCB) Hari Balakrishnan (MIT) Eric Brewer (UCB)

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 11 Information.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 10 User.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 12 Cross-Layer.
Reconsidering Reliable Transport Protocol in Heterogeneous Wireless Networks Wang Yang Tsinghua University 1.
6: Opportunistic Communication and Multiuser Diversity
1. Introduction.
Interference of Bluetooth and IEEE , MSWIM01 July 21, 01 1 Interference of Bluetooth and IEEE : Simulation Modeling and Performance Evaluation.
International Technology Alliance In Network & Information Sciences International Technology Alliance In Network & Information Sciences 1 Interference.
Multihop Networks: Fact or Fiction?
1 Multi-Channel Wireless Networks: Capacity and Protocols Nitin H. Vaidya University of Illinois at Urbana-Champaign Joint work with Pradeep Kyasanur Chandrakanth.
and 6.855J Cycle Canceling Algorithm. 2 A minimum cost flow problem , $4 20, $1 20, $2 25, $2 25, $5 20, $6 30, $
Wireless Networks Should Spread Spectrum On Demand Ramki Gummadi (MIT) Joint work with Hari Balakrishnan.
Towards Collision Detection in Wireless Networks Souvik Sen, Naveen Santhapuri, Romit Roy Choudhury, Srihari Nelakuditi.
1 The Case for Heterogeneous Wireless MACs Chun-cheng Chen Haiyun Luo Dept. of Computer Science, UIUC.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
0 - 0.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
MULTIPLICATION EQUATIONS 1. SOLVE FOR X 3. WHAT EVER YOU DO TO ONE SIDE YOU HAVE TO DO TO THE OTHER 2. DIVIDE BY THE NUMBER IN FRONT OF THE VARIABLE.
SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION
MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Addition Facts
Università degli Studi di Firenze 08 July 2004 COST th MCM - Budapest, Hungary 1 Cross-layer design for Multiple access techniques in wireless communications.
Designing Multi-User MIMO for Energy Efficiency
Chapter 7 Transmission Media
Faculty of Computer Science & Engineering
College of Engineering Capacity Allocation in Multi-cell UMTS Networks for Different Spreading Factors with Perfect and Imperfect Power Control Robert.
1 COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED. On the Capacity of Wireless CSMA/CA Multihop Networks Rafael Laufer and Leonard Kleinrock Bell.
نیمسال اوّل افشین همّت یار دانشکده مهندسی کامپیوتر مخابرات سیّار (626-40) ظرفیت انتقال اطلاعات.
Copyright © Chang Gung University. Permission required for reproduction or display. On Femto Deployment Architecture and Macrocell Offloading Benefits.
Simultaneous Routing and Resource Allocation in Wireless Networks Mikael Johansson Signals, Sensors and Systems, KTH Joint work with Lin Xiao and Stephen.
1 Adaptive Bandwidth Allocation in TDD-CDMA Systems Derek J Corbett & Prof. David Everitt The University of Sydney.
Submission doc.: IEEE /0166r0January 2011 Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni WürzburgSlide 1Barbara Staehle, Uni Würzburg.
Doc.: IEEE /0018r0 Submission May 2004 Steve Shellhammer, Intel CorporationSlide 1 IEEE Wireless Coexistence TAG Steve Shellhammer
Interference Cancellation for Downlink MU-MIMO
Submission doc.: IEEE /1409r0 November 2013 Adriana Flores, Rice UniversitySlide 1 Dual Wi-Fi: Dual Channel Wi-Fi for Congested WLANs with Asymmetric.
Doc.: IEEE /1234r0 Submission November 2009 Sameer Vermani, QualcommSlide 1 Interference Cancellation for Downlink MU-MIMO Date: Authors:
Addition 1’s to 20.
25 seconds left…...
Test B, 100 Subtraction Facts
Week 1.
Practical Conflict Graphs for Dynamic Spectrum Distribution Xia Zhou, Zengbin Zhang, Gang Wang, Xiaoxiao Yu *, Ben Y. Zhao and Haitao Zheng Department.
We will resume in: 25 Minutes.
1 Understanding and Mitigating the Impact of RF Interference on Networks Ramki Gummadi (MIT), David Wetherall (UW) Ben Greenstein (IRS), Srinivasan.
Designing Multi-User MIMO for Energy Efficiency
VSMC MIMO: A Spectral Efficient Scheme for Cooperative Relay in Cognitive Radio Networks 1.
CMAP: Harnessing Exposed Terminals in Wireless Networks Mythili Vutukuru Joint work with Kyle Jamieson and Hari Balakrishnan.
MIMO As a First-Class Citizen in Kate C.-J. Lin Academia Sinica Shyamnath Gollakota and Dina Katabi MIT.
Living with Interference in Unmanaged Wireless Environments David Wetherall, Daniel Halperin and Tom Anderson Intel Research & University of Washington.
Successive Interference Cancellation: A Back of the Envelope Perspective Souvik Sen, Naveen Santhapuri, Romit Roy Choudhury, Srihari Nelakuditi I have.
Wireless Multiaccess Using CDMA1 Wireless Multiaccess Using Code Division Multiple Access Zartash Afzal Uzmi LUMS, Lahore. Pakistan April 18, 2003.
Doc.: IEEE /0861r0 SubmissionSayantan Choudhury Impact of CCA adaptation on spatial reuse in dense residential scenario Date: Authors:
1 11 Subcarrier Allocation and Bit Loading Algorithms for OFDMA-Based Wireless Networks Gautam Kulkarni, Sachin Adlakha, Mani Srivastava UCLA IEEE Transactions.
Achieving Spectrum Efficiency Lili Qiu University of Texas at Austin 1.
A Radio Multiplexing Architecture for High Throughput Point to Multipoint Wireless Networks Ramakrishna Gummadi Rabin Patra, Sergiu Nedevschi, Sonesh Surana,
Cross-Layer Approach to Wireless Collisions Dina Katabi.
VWID: Variable-Width Channels for Interference Avoidance Brad Karp UCL Computer Science CS M038 / GZ06 26 th January, 2009.
5: Capacity of Wireless Channels Fundamentals of Wireless Communication, Tse&Viswanath 1 5. Capacity of Wireless Channels.
QoS Routing and Scheduling in TDMA based Wireless Mesh Backhaul Networks Chi-Yao Hong, Ai-Chun Pang,and Jean-Lien C. Wu IEEE Wireless Communications and.
報告人 : 陳柏偉.  INTRODUCTION  MODELS AND SCENARIOS  METHODOLOGY  RESULTS  CONCLUSION 2.
An Adaptive, High Performance MAC for Long-Distance Multihop Wireless Networks Sergiu Nedevschi *, Rabin K. Patra *, Sonesh Surana *, Sylvia Ratnasamy.
2012 1/6 NSDI’08 Harnessing Exposed Terminals in Wireless Networks Mythili Vutukuru, Kyle Jamieson, and Hari Balakrishnan MIT Computer Science and Artificial.
Why PHY Really Matters Hari Balakrishnan MIT CSAIL August 2007 Joint work with Kyle Jamieson and Ramki Gummadi.
A Measurement Study of Interference Modeling and Scheduling in LPWN Ritesh Maheshwari, Shweta Jain, Samir R. Das Department of Computer Science Stony Brook.
Achieving Single Channel, Full Duplex Wireless Communication
Howard Huang, Sivarama Venkatesan, and Harish Viswanathan
Optimal Sequence Allocation and Multi-rate CDMA Systems
On the Physical Carrier Sense in Wireless Ad-hoc Networks
Interference Avoidance and Control
Presentation transcript:

Interference Avoidance and Control Ramki Gummadi (MIT) Joint work with Rabin Patra (UCB) Hari Balakrishnan (MIT) Eric Brewer (UCB)

HotNets Interference-limited networks Interference: Fundamental consequence of resource sharing Wireless LANs 3G, WiMax Mesh networks Increasingly interference-limited, not noise-limited

HotNets Interference: Friend or foe? Challenges: Interference is time-varying Bursty data traffic, not predictable voice traffic Radio propagation hard to model or predict Opportunity: Unlike noise, interference isnt random If strong enough, understand and cancel it Avoid or control internal interference So, treating interference as noise is inefficient

HotNets Goal: Improve aggregate throughput Concurrent transmissions improve throughput More total received power But they also increase interference Eliminate interference, maintaining concurrency?

HotNets VWID: Variable WIDth channels Interferers in orthogonal channels Variable widths for heterogeneous SINRs and bursty demands

HotNets Key questions (and talk outline) How does VWID compare analytically to: TDMA? CSMA? How much improvement in practice?

HotNets Capacity of variable-width channels Multiple transmitters, one receiver Radios have a power limit Single antenna at a node Channel doesnt vary in frequency or time Restriction removed in implementation Additive White Gaussian Noise (AWGN)

HotNets Two-transmitter capacity region R1R1 R2R2 (bits/s/Hz) R 1 < l o g 2 ( 1 + P 1 N ) b i t s / s / H z ; R 2 < l o g 2 ( 1 + P 2 N ) b i t s / s / H z ; R 1 + R 2 < l o g 2 ( 1 + P 1 + P 2 N ) b i t s / s / H z : l o g 2 ( 1 + P 1 N ) l o g 2 ( 1 + P 2 N ) Optimum sum-capacity Transmitter 1s Rate

HotNets VWID throughput R1R1 R2R2 (bits/s/Hz) A B Optimum throughput at ® = P 1 P 1 + P 2 l o g 2 ( 1 + P 2 N ) l o g 2 ( 1 + P 1 N ) R 1 < ® l o g 2 ( 1 + P 1 ® N ) b i t s / s / H z ; R 2 < ( 1 ¡ ® ) l o g 2 ( 1 + P 2 ( 1 ¡ ® ) N ) b i t s / s / H z : l o g 2 ( 1 + P 2 N ) l o g 2 ( 1 + P 1 N ) ® = 0 ® = 1

HotNets TDMA throughput: VWID throughput: Improvement higher for smaller allocations, due to additional in vs. VWID vs. TDMA: Two-node case l o g 2 ( 1 + P ® N ) l o g 2 ( 1 + P N ) C 1 + C 2 2 ; C 1 = l o g 2 ( 1 + P 1 N ) ; C 2 = l o g 2 ( 1 + P 2 N ) ® > C 1 + C 2 2 l o g 2 ( 2 C C 2 ¡ 1 ) VWID TDMA R1R1 R2R2 (bits/s/Hz) A B l o g 2 ( 1 + P 1 N ) VWID l o g 2 ( 1 + P 2 N )

HotNets VWID vs. TDMA: n-node case VWID improves throughput by bits/s/Hz with n transmitters vs. SINRs show large variation With n weak nodes and one strong node, aggregate TDMA throughput VWID throughput Relative throughput 6 th node SINR (dB) 5 transmitters at 10 dB SINR l o g 2 ( 1 + n P N ) l o g 2 ( 1 + P N ) µ ( l o g 2 ( n )) ! l o g 2 ( 1 + P wea k N ) ! l o g 2 ( 1 + P s t ron g + n P wea k N ) VWID improves throughput linearly with power (dB) of stronger node VWID improves throughput linearly with power (dB) of stronger node

HotNets Time to send two bits at rates CSMA node throughput: Hurts stronger node VWID aggregate throughput improves with the total received power VWID vs. CSMA: Two-node case R 1, R 2 : 1 R R 2 Relative throughput 2 nd node SINR (dB) Two transmitters, one at 10 dB SINR 1 1 R R 2 = R 1 R 2 R 1 + R 2 · m i n f R 1 ; R 2 g VWID improves aggregate throughput linearly with total received power (dB) VWID improves aggregate throughput linearly with total received power (dB)

HotNets Key questions (and talk outline) How does VWID compare analytically to: TDMA? CSMA? How much improvement in practice?

HotNets VWID design Channel assignment algorithm 5,10 or 20 MHz variable-width sub-channels Maximize measured aggregate throughput Fairness: Dont degrade link throughput Exhaustive search for sub-channels Accounts for frequency-selective fading Worst-case exponential in interferers

HotNets Evaluation testbed Outdoor testbed Worst-case scenario (unequal SINRs) 10 links (2-4 km), 25 dBi antennas, 5.3 GHz, Atheros Point-point and point- multipoint topologies CSMA MAC Higher throughput than TDMA if traffic is bursty Unidirectional UDP traffic E2 1,

HotNets Point-point throughput improvement VWID Point-Point No VWID, Point-Point Median link throughput improves by 50%

HotNets Point-Multipoint throughput improvement VWID Point-Point No VWID, Point-Point Worst link throughput improves by 2x

HotNets Related Work Interference cancellation Decode colliding transmissions jointly Signals typically differ by large SINR or coding rates ZigZag decoding No coordination, but no net concurrency increase 1 st timeslot 2 nd timeslot

HotNets Conclusions Increase concurrency, total received power Throughput improvements ~ % over TDMA and CSMA Weakness: Inter-AP coordination (tomorrow) Future work: Practical implementation