Chapter 3 Brain and Behavior.

Slides:



Advertisements
Similar presentations
The Nervous System The nervous system contains billions of cells called neurons. The nervous system contains billions of cells called neurons. Neurons.
Advertisements

Chapter 2: Brain and Behavior
Biological Basis of Behavior
The part of the neuron responsible for carrying a message
Chapter 2: Neuroscience and Behavior
And Brain Organization
Aim: How does the nervous system communicate with other body systems? HW 19 Text chapter 35 Pg 897 vocabulary Pg 900 Q#1 to 4.
 All or none = the least amount of energy needed to start the motion  Action Potential = the movement of neural activity  Refractory Period = the.
Body and behavior Chapter 6. Standards Standard II: Biopsychological Biological basis of behavior IIA-1.1 Structure and function on neuron IIA- 2.1 Organization.
PRS Slides for PowerPoint Ch. 2 The Biological Perspective Copyright © Pearson Education, 2012.
The Brain.
8 th Grade Information Processing. Question: How do your feet know when to move when you want to walk?
Principles of Biology By Frank H. Osborne, Ph. D. Nervous System.
Chapter 2 Neuroscience.
Chapter 2  Neural Communication & The Brain  Psychology 101  Sara J. Buhl.
Chapter 2 Brain and Behavior
Chapter 2 Brain and Behavior
Biology and Behavior Chapter 2 Part II. A Walk Through the Brain The brain stem. The cerebellum. The thalamus. The hypothalamus and the pituitary gland.
Chapter 3 The Brain, Biology, and Behavior. n Neuron: Individual nerve cell  Dendrites: Receive messages from other neurons  Soma: Cell body; body of.
Chapter 2 Brain and Behavior. Neuron and Its Parts Neuron: Individual nerve cell; 100 billion in brain.
The Nervous System.
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. Neuroscience and Behavior Chapter 2.
Chapter 3 Biology and Behavior. Sensation, perception, memory, and thinking are all psychological processes that have at least a partly biological basis.
Neuroscience: The Biological Perspective Chapter 2.
Chapter 2: The Biology Underlying Behaviour
$100 $400 $300$200$400 $200$100$100$400 $200$200$500 $500$300 $200$500 $100$300$100$300 $500$300$400$400$500.
Course Introduction to Psychology Brain and Behaviour Prof. BARAKAT Summer Term.
Introduction to Psychology: Kellogg Community College, Talbot Chapter 2 Chapter 2 Brain and Behavior.
Chapter 2 Brain and Behavior Table of Contents Exit.
Behavioral Neuroscience
Section 2 : Behavioral Neuroscience Psychology in Modules by Saul Kassin.
Biology and Behavior Chapter 3. The Nervous System Central Nervous System – consists of the brain and spinal cord. Central Nervous System – consists of.
The Brain, Biology, and Behavior
Chapter 2: Brain and Behavior
DOUBLE Biocomputer Wired for Action MWABBYH CTBIRLOBES.
HOLT, RINEHART AND WINSTON P SYCHOLOGY PRINCIPLES IN PRACTICE 1 Chapter 3 Good Morning!
The Nervous System. To return to the chapter summary click escape or close this document. Human Nervous System.
The Nervous System 35-2 & 35-3.
Biological Psychology. Distribution of the estimated 100 billion neurons in the adult central nervous system. Communication in the Nervous System.
Chapter 2 Brain and Behavior. Neurons -the brain consists of some 100 billion neurons (individual nerve cells) which carry and process information, activate.
Topic 1 – 10 Points QUESTION: Made up of specific structures: dendrites, cell body, axon, and terminal buttons. ANSWER: What is a Neuron?
Human Learning & Memory Siena Heights University Chapters 1 & 2 Dr. S.Talbot.
The Neuron Neuron II Brain Parts The Nervous System.
Introduction to Psychology Brain and Behavior. Nervous System CNS: Brain and Spinal Cord Peripheral Nervous System: network of nerves that carries information.
Introduction to Psychology: KCC Brain and Behavior.
Introduction to Psychology Brain and Behavior. Introduction to Psychology FIGURE Subparts of the nervous system.
Main Function: This communication system controls and coordinates functions throughout the body and responds to internal and external stimuli. Our nervous.
BIOLOGICAL BASES OF BEHAVIOR (8-10%) 8-10%. The Neuron Is the basic building block of the nervous system. It uses both chemical & electrical signals to.
Brain and Behavior.
Neurons.
CHAPTER 2 : Behavioral Neuroscience Essentials of Psychology, by Saul Kassin ©2004 Prentice Hall Publishing.
The Biological Perspective Chapter 2. Central Nervous System Central nervous system (CNS) - part of the nervous system consisting of the brain and spinal.
BRAIN AND BEHAVIOR Chapter 3 Table of Contents Exit es_a_map_of_the_brain.html?utm_ source=newsletter_weekly_
IV.Neuroscience The relationship between brain and behavior.
Central N.S. (brain and spinal cord ) Nervous system Autonomic N.S. (controls self-regulated action of internal organs and glands like The heart and lungs)
Nervous System Transmission of signals for communication and for coordination of body systems.
Laurel McKay Period 1.  EEG- measures changes in brain electrical activity, can allow for localization of functions in the brain  CAT Scans-make cross-sectional.
Click on a lesson name to select. Chapter 33 Nervous System Section 1: Structure of the Nervous System Section 2: Organization of the Nervous System.
The Nervous System. Central Nervous System (CNS) – brain and spinal cord Peripheral Nervous System (PNS) – nerves that communicate to the rest of the.
Vocab 3b The Brain. area at the front of the parietal lobes that registers and processes body touch and movement sensations.
Biology and Behavior.  Central Nervous System  Brain and Spinal Cord  Peripheral Nervous system  Nerve cells that send messages from CNS to rest of.
PSYCHOLOGY THE BRAIN Neuron Neuron- a nerve cell, the foundation of the nervous system. (All different shapes and sizes, but all have the same functions.)
Chapter Three Brains, Body, & Behavior. The Neuron Building block of nervous system 100 billion neurons (nerve cells) Collect and send information (to.
Chapter 2 Brain and Behavior Table of Contents Exit.
Da Brain.
Chapter Three Brains, Body, & Behavior.
Da Brain.
Brain and Behavior.
Introduction to Psychology
Chapter 2 Brain and Behavior
Presentation transcript:

Chapter 3 Brain and Behavior

Key Questions How do nerve cells operate and communicate? What are the functions of major parts of the nervous systems? How is the brain organized and what do its higher structure do? Why are the brain’s association areas important? What happens when they are injured? What kinds of behaviors are controlled by the subcortex? Does the glandular system affect behavior? In what ways do right-and left—handed individuals differ? How do biopsychologists study the brain?

Neuron and Its Parts Neuron: Individual nerve cell; 100 billion in brain Dendrites: Receive messages from other neurons Soma: Cell body; body of the neuron. Receives messages and sends messages down axon Axon: Carries information away from the cell body Axon Terminals: Branches that link the dendrites and somas of other neurons

Fig. 2.1 An example of a neuron, or nerve cell, showing several of its important features. The right foreground shows a nerve cell fiber in cross section, and the upper left inset gives a more realistic picture of the shape of neurons. The nerve impulse usually travels from the dendrites and soma to the branching ends of the axon. The neuron shown here is a motor neuron. Motor neurons originate in the brain or spinal cord and send their axons to the muscles or glands of the body.

Fig. 2.2 Activity in an axon can be measured by placing electrical probes inside and outside the axon. (The scale is exaggerated here. Such measurements require ultra-small electrodes, as described later in this chapter.) At rest, the inside of an axon is about –60 to –70 millivolts, compared with the outside. Electrochemical changes in a nerve cell generate an action potential. When positively charged sodium ions (Na+) rush into the cell, its interior briefly becomes positive. This is the action potential. After the action potential, an outward flow of positive potassium ions (K+) restores the negative charge inside the axon. (See Figure 2.3 for further explanation.)

Fig. 2. 5 A highly magnified view of the synapse shown in Fig. 2. 1 Fig. 2.5 A highly magnified view of the synapse shown in Fig. 2.1. Neurotransmitters are stored in tiny sacs called synaptic vesicles. When a nerve impulse arrives at an axon terminal, the vesicles move to the surface and release neurotransmitters. These transmitter molecules cross the synaptic gap to affect the next neuron. The size of the gap is exaggerated here; it is actually only about one millionth of an inch. Transmitter molecules vary in their effects: Some excite the next neuron and some inhibit its activity.

The Nerve Impulse Resting Potential: Electrical charge of an inactive neuron Threshold: Trigger point for a neuron’s firing Action Potential: Nerve impulse Ion Channels: Axon membrane has these tiny holes or tunnels Negative After-Potential: When a neuron is less willing to fire

Fig. 2.3 The inside of an axon normally has a negative electrical charge. The fluid surrounding an axon is normally positive. As an action potential passes along the axon, these charges reverse, so that the interior of the axon briefly becomes positive.

Fig. 2. 4 Cross-sectional views of an axon Fig. 2.4 Cross-sectional views of an axon. The right end of the top axon is at rest, with a negatively charged interior. An action potential begins when the ion channels open and sodium ions (Na+) enter the axon. In this drawing the action potential would travel rapidly along the axon, from left to right. In the lower axon the action potential has moved to the right. After it passes, potassium ions (K+) flow out of the axon. This quickly renews the negative charge inside the axon, so it can fire again. Sodium ions that enter the axon during an action potential are pumped back out more slowly. Their removal restores the original resting potential.

Animation: Neuron & Neural Impulse

Synapses and Neurotransmitters Synapse: The microscopic space between two neurons, over with messages pass Neurotransmitters: Chemicals that alter activity in neurons; brain chemicals Acetylcholine: Activates muscles Dopamine: Muscle control Serotonin: Mood and appetite control Messages from one neuron to another pass over a microscopic gap called a synapse Receptor Site: Areas on the surface of neurons and other cells that are sensitive to neurotransmitters

Animation: Synaptic Transmission

Neural Regulators Neuropeptides: Regulate activity of other neurons Enkephalins: Relieve pain and stress; similar to endorphins Endorphins: Released by pituitary gland; also help to relieve pain Placebos raise endorphin levels

The Nervous System- Wired for Action Nerves and Neurons Nerves: Large bundles of axons and dendrites Myelin: Fatty layer that coats some axons Multiple Sclerosis (MS) occurs when myelin layer is destroyed; numbness, weakness, and paralysis occur Neurilemma: Thin layer of cells wrapped around axons outside brain and spinal cord; forms a tunnel that damaged fibers follow as they repair themselves

Brain Grafts and Nerve Regeneration Transplanting brain tissue

The Nervous System Central Nervous System (CNS): Brain and spinal cord Peripheral Nervous System: All parts of the nervous system outside of the brain and spinal cord Somatic System: Carries messages to and from skeletal muscles and sense organs; controls voluntary behavior Autonomic System: Serves internal organs and glands; controls automatic functions such as heart rate and blood pressure

Two Divisions of the Autonomic System Sympathetic: Arouses body; emergency system Parasympathetic: Quiets body; most active after an emotional event

Fig. 3-9 (a) Central and peripheral nervous systems Fig. 3-9 (a) Central and peripheral nervous systems. (b) Spinal nerves, cranial nerves, and the autonomic nervous system.

Fig. 3-10 Subparts of the nervous system.

Fig. 3-11 Sympathetic and parasympathetic branches of the autonomic nervous system.

The Spinal Cord White matter: Areas where myelin is present Spinal Nerves: 31 of them; carry sensory and motor messages to and from the spinal cord Cranial Nerves: 12 pairs that leave the brain directly; also work to communicate messages

How is the Spinal Cord Related to Behavior? Reflex Arc: Simplest behavioral pattern; occurs when a stimulus provokes an automatic response Sensory Neuron: Nerve cell that carries messages from the senses toward the CNS Connector Neuron: Nerve cell that links two others Motor Neuron: Cell that carries commands from the CNS to muscles and glands Effector Cells: Cells capable of producing a response

Fig. 3-12 A simple sensory-motor (reflex) arc Fig. 3-12 A simple sensory-motor (reflex) arc. A simple reflex is set in motion by a stimulus to the skin (or other part of the body). The nerve impulse travels to the spinal cord and then back out to a muscle, which contracts. Reflexes provide an “automatic” protective device for the body.

Courtesy of Richard Haier, University of California, Irvine 3-14 In the images you see here, red, orange, and yellow indicate high consumption of glucose; green, blue, and pink show areas of low glucose use. The PET scan of the brain on the left shows that a man who solved 11 out of 36 reasoning problems burned more glucose than the man on the right, who solved 33.

Brain Mapping Read article from CNN

Project

Cerebral Cortex Cerebral Cortex: Outer layer of the cerebrum; contains 70% of neurons in CNS Cerebrum: Two large hemispheres that cover upper part of the brain Corticalization: Increase in size and wrinkling of the cortex

Split Brains Cerebral Hemispheres: Right and left halves of the cerebrum Corpus Callosum: Bundle of fibers connecting cerebral hemispheres Corpus Callosum is cut; done to control severe epilepsy (seizure disorder) Result: The person now has two brains in one body This operation is rare and is often used as a last resort

Figure 3-15 Corpus Callosum

Fig. 3-16 Basic nerve pathways of vision Fig. 3-16 Basic nerve pathways of vision. Notice that the left portion of each eye connects only to the left half of the brain; likewise, the right portion of each eye connects to the right brain. When the corpus callosum is cut, a “split brain” results. Then visual information can be directed to one hemisphere or the other by flashing it in the right or left visual field as the person stares straight ahead.

Right Brain/Left Brain About 95 percent of our left brain is used for language Left hemisphere better at math, judging time and rhythm, and coordinating order of complex movements Processes information sequentially and is involved with analysis Right hemisphere good at perceptual skills, and at expressing and detecting other’s emotions Processes information simultaneously and holistically

Fig. 3-17 If a circle is flashed to the left brain and a split-brain patient is asked to say what she or he saw, the circle is easily named. The person can also pick out the circle by touching shapes with the right hand, out of sight under a tabletop (shown semi-transparent in the drawing). However, the left hand will be unable to identify the shape. If a triangle is flashed to the right brain, the person cannot say what was seen (speech is controlled by the left hemisphere). The person will also be unable to identify the correct shape by touch with the right hand. Now, however, the left hand will have no difficulty picking out the hidden triangle. Separate testing of each hemisphere reveals distinct specializations, as listed above.

Corpus Callosum Cut Video

Central Cortex Lobes Occipital: Back of brain; vision center Parietal: Just above occipital; bodily sensations such as touch, pain, and temperature (somatosensory area) Temporal: Each side of the brain; auditory and language centers Frontal: Movement, sense of smell, higher mental functions Contains motor cortex; controls motor movement

The left and right brain have different information processing styles The left and right brain have different information processing styles. The right brain gets the big pattern; the left focuses on small details.

Brain Parts Worksheet

When the Brain Fails to Function Properly Association Cortex: Combine and process information from the five senses Aphasia: Language disturbance resulting from brain damage Broca’s Area: Related to language and speech production If damaged, person knows what s/he wants to say but can’t say the words Wernicke’s Area: Related to language comprehension; in left temporal lobe If damaged, person has problems with meanings of words, NOT pronunciation

When the Brain Fails to Function Properly (cont.) Agnosia: Inability to identify seen objects Facial Agnosia: Inability to perceive familiar faces

Brain Injury Brain Injury Worksheet

His and Her Brains Read page 66

Hindbrain (Subcortex) Immediately below cerebral hemispheres Brainstem : Consists mainly of medulla and cerebellum Medulla: Controls vital life functions such as heart rate, swallowing, and breathing Pons (Bridge): Acts as a bridge between medulla and other structures Influences sleep and arousal Cerebellum: Located at base of brain Regulates posture, muscle tone, and muscular coordination

Fig.3-22 This simplified drawing shows the main structures of the human brain and describes some of their most important features. (You can use the color code in the foreground to identify which areas are part of the forebrain, midbrain, and hindbrain.)

Hindbrain (Subcortex): Reticular Formation (RF) Reticular Formation (RF): Inside medulla and brainstem Associated with alertness, attention, and some reflexes (breathing, coughing, sneezing, vomiting) Reticular Activating System (RAS): Part of RF that keeps it active and alert RAS acts like the brain’s alarm clock Activates and arouses cerebral cortex

Forebrain Structures are part of Limbic System: System within forebrain closely linked to emotional response and motivating behavior Thalamus: Relays sensory information on the way to the cortex; switchboard Hypothalamus: Regulates emotional behaviors and motives (e.g., sex, hunger, rage, hormone release) Amygdala: Associated with fear responses Hippocampus: Associated with storing permanent memories; helps us navigate through space Electrical stimulation of the brain (ESB): Is the direct electrical stimulation and activation of the brain tissue

Fig. 3-23 Parts of the limbic system are shown in this highly simplified drawing. Although only one side is shown, the hippocampus and the amygdala extend out into the temporal lobes at each side of the brain. The limbic system is a sort of “primitive core” of the brain strongly associated with emotion.

The Brain in Perspective- Beyond the Biocomputer Endocrine system: Made up of glands that pour chemicals directly into the bloodstream or lymph system Hormones: Chemicals in blood that are carried throughout the body that affect internal activities and behavior.

Endocrine System Glands that pour chemicals (hormones) directly into the bloodstream or lymph system Pituitary Gland: Master gland that regulates growth via growth hormone Too little means person will be smaller than average Hypopituitary Dwarfs: As adults, perfectly proportioned but tiny Treatable by using human or synthetic growth hormone; will add a few inches Treatment is long and expensive

Endocrine System (cont.) Too much growth hormone leads to giantism Excessive body growth Acromegaly: Enlargement of arms, hands, feet, and facial bones Caused by too much growth hormone secreted late in growth period Andre the Giant Pituitary also governs functioning of other glands, especially thyroid, adrenals, and gonads

PRINCESS BRIDE

Endocrine System (cont.) Pineal Gland: Regulates body rhythms and sleep cycles. Releases hormone melatonin, which responds to daily variations in light Thyroid: In neck; regulates metabolism Hyperthyroidism: Overactive thyroid; person tends to be thin, tense, excitable, nervous Hypothyroidism: Underactive thyroid; person tends to be inactive, sleepy, slow, obese

The Adrenal Glands Adrenals: Arouse body, regulate salt balance, adjust body to stress, regulate sexual functioning; located on top of kidneys Releases epinephrine and norepinephrine (also known as adrenaline and noradrenaline) Epinephrine arouses body; is associated with fear Norepinephrine arouses body; is linked with anger

The Adrenal Glands (cont.) Adrenal Medulla: Inner core of adrenals; source of epinephrine and norepinephrine Adrenal Cortex: Produces hormones known as corticoids Regulate salt balance Deficiency in some types will cause powerful salt cravings Also help body to adjust to stress Secondary source of sex hormones Oversecretion of adrenal sex hormones can cause virilism: exaggerated male characteristics (Bearded woman) May also cause premature puberty if oversecretion occurs early in life

Redundancy Redundancy: duplication of the brains functions in multiple brain structures, increases complexity of the brain, how a child can overcome brain damage and function have “normal” functioning brain Dozens of brain areas do what one could manage alone

Plasticity Plasticity: Brain’s ability to change its structure and functions, flexibility of the brains organization Based on increased branching of dendrites in young age if brain damage occurs (ages birth to 5 best) chances decrease after age 10

Homework Quiz #5, take home Grade 41-70 Diagnostic AP test Read page 66, write one paragraph summary on “His & Her Brain” Read pages 75-78, write 2 paragraph summary on “Handedness” Define Follwing terms EBS, pg 70 use pgs. 79-82 for all below, or online power Chapter 3 point found on Bird website CT Scan, MRI EEG MANSCAN PET Scan MEG Scan  

Fig. 2.31 Neuroscientists are searching for ways to repair damage caused by strokes and other brain injuries. One promising technique involves growing neurons in the laboratory and injecting them into the brain. These immature cells are placed near damaged areas, where they can link up with healthy neurons. The technique has proved successful in animals and is now under study in humans.

Fig. 2.27 A direct brain-computer link may provide a way of communicating for people who are paralyzed and unable to speak. Activity in the patient’s motor cortex is detected by an implanted electrode. The signal is then amplified and transmitted to a nearby computer. By thinking in certain ways, patients can move an on-screen cursor. This allows them to spell out words or select from a list of messages, such as “I am thirsty.”

Researching the Brain Ablation: Surgical removal of parts of the brain Deep Lesioning: A thin wire electrode is lowered into a specific area inside the brain; Electrical current is then used to destroy a small amount of brain tissue Electrical Stimulation of the Brain (ESB): When an electrode is used to activate target areas in the brain Electroencephalograph (EEG): Detects, amplifies, and records electrical activity in the brain

Researching the Brain (cont.) Computed Tomographic Scanning (CT): Computer-enhanced X-ray of the brain or body Magnetic Resonance Imaging (MRI): Uses a strong magnetic field, not an X-ray, to produce an image of the body’s interior Functional MRI: MRI that makes brain activity visible Positron Emission Tomography (PET): Computer-generated color image of brain activity, based on glucose consumption in the brain

© Huntington Magnetic Resonance Center, Pasadena, California An MRI scan of the brain.

Washington University School of Medicine, St. Louis PET scans.

Washington University School of Medicine, St. Louis The bright spots you see here were created by a PET scan. However, here they have been placed over an MRI scan so that the brain’s anatomy is visible. The three bright spots are areas in the left brain related to language. The spot on the right is active during reading. The top-middle area is connected with speech. The area to the left, in the frontal lobe is linked with thinking about a word’s meaning (Montgomery, 1989).

Fig. 2.10 The functions of brain structures are explored by selectively activating or removing them. Brain research is often based on electrical stimulation, but chemical stimulation is also used at times.

Fig. 2.11 An EEG recording.

Brain Drain Great Brain Drain worksheet

Take Home Test!