D retention in O-covered and pure beryllium

Slides:



Advertisements
Similar presentations
J. Roth, EU PWI TF, SEWG Fuel Retention, Cadarache, June 15, 09 Tritium inventory: Joint international scaling for ITER WP09-PWI-01-01/IPP/PS Status by.
Advertisements

Report IPP Garching EU Task Force PWI Meeting, Cadarache Oct Max-Planck-Institut für Plasmaphysik compiled by Arne Kallenbach (IPP - EU-PWI.
Report on SEWG mixed materials EU PWI TF meeting Madrid 2007 V. Philipps on behalf of SEWG members Mixed material formation is a among the critical ITER.
R. Doerner, Oct. 18, 2005 EU PWI TF meeting, France Beryllium and carbon mixed-material studies R. P. Doerner, M. J. Baldwin, J. Hanna and D. Nishijima.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,
PWI Modelling Meeting – EFDA C. J. OrtizCulham, Sept. 7 th - 8 th, /8 Defect formation and evolution in W under irradiation Christophe J. Ortiz Laboratorio.
M. Mayer SEWG Fuel Retention June Sample Analysis for TS, AUG and JET: Depth Profiling of Deuterium M. Mayer Max-Planck-Institut für Plasmaphysik,
WP10-PWI (02)/TEKES/BS(PS) Characterization of retention mechanisms in AUG Monitoring meeting of the EFDA PWI SEWG on Gas Balance and Fuel Retention,
M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
Kazuyoshi Sugiyama, SEWG meeting, Culham, July Outline: 1.Introduction 2.Experimental procedure 3.Result 4.Summary Kazuyoshi Sugiyama First.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SWEG Deuterium retention in graphite samples exposed to beryllium-seeded.
Vienna University of Technology (TU Wien) slides provided by F. Aumayr EURATOM – ÖAW: Contribution of the Austrian Fusion Association 2006 Innsbruck University.
SEWG Fuel Retention July 2008 © Matej Mayer Fuel retention in ASDEX Upgrade tungsten coatings M. Mayer, M. Balden, K. Krieger, S. Lindig, O. Ogorodnikova,
CIPS SEWG FR, JET 2008C. Hopf O 2 /He glow discharge cleaning: Experience at IPP Christian Hopf, Volker Rohde, Wolfgang Jacob Max-Planck-Institut für Plasmaphysik.
SEWG Gas Balance 2007 © Matej Mayer First results on deuterium depth profiling in W tiles M. Mayer 1, V.Kh. Alimov, V. Rohde 1, J. Roth 1, A. Herrmann.
C. Björkas, K. Vörtler and K. Nordlund Department of Physics, University of Helsinki Joint TFE-SEWG - Material Migration and Material Mixing meeting MD.
1B. PégouriéDITS progress report 27/04/07 Euratom EXPERIMENTAL CAMPAIGN No reliable estimation of the wall inventory WI ~ ??? D atoms (Tsitrone,
D retention and release behaviour of Be/C/W mixed materials
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
SEWG Mixed Materials Culham M. Oberkofler Martin Oberkofler, M. Reinelt, S. Lindig, M. Racinski, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik,
PWI questions of ITER review working groups WG1 and WG8 : Materials Introduction EU PWI TF V. Philipps, EU PWI TF meeting, Oct 2007, Madrid V. Philipps,
SEWG Meeting Mixed Materials 2007 First results from beryllium on carbon Florian Kost Christian Linsmeier.
Member of the Helmholtz Association Carbon based materials: fuel retention and erosion under ITER-like mixed species plasma conditions Arkadi Kreter et.
No 1 V. Philipps, SEWG Fuel retention, July 2010, Garching Joint TEXTOR, MAGNUM and PISCES experiments on retention in W and mixed W/C system V. Philipps,
R. Doerner, EU SEWG meeting, JET. July 9-10, 2007 Co-deposition/Co-implantation R. Doerner, M. Baldwin, G. De Temmerman, D. Nishijima UCSD K. Schmid, Ch.
Institute for Plasma Physics Rijnhuizen D retention in W and mixed systems in Pilot-PSI G. De Temmerman a, K. Bystrov a, L. Marot b, M. Mayer c, J.J. Zielinski.
X-ray Photoelectron Spectroscopy
18 th International Conference on Plasma Surface Interaction in Controlled Fusion Toledo, Spain, May 26 – 30, Deuterium trapping in tungsten damaged.
Complex chemical interactions of lithium, deuterium, and oxygen on lithium-coated graphite PFC surfaces C.N. Taylor1, B. Heim1, J.P. Allain1, C. H. Skinner2,
1 EFFECTS OF CARBON REDEPOSITION ON TUNGSTEN UNDER HIGH-FLUX, LOW ENERGY Ar ION IRRADITAION AT ELEVATED TEMPERATURE Lithuanian Energy Institute, Lithuania.
L.B. Begrambekov Plasma Physics Department, Moscow Engineering and Physics Institute, Moscow, Russia Peculiarities, Sources and Driving Forces of.
Dynamic hydrogen isotope behavior and its helium irradiation effect in SiC Yasuhisa Oya and Satoru Tanaka The University of Tokyo.
Catalysis and Catalysts - XPS X-Ray Electron Spectroscopy (XPS)  Applications: –catalyst composition –chemical nature of active phase –dispersion of active.
Study of sputtering on thin films due to ionic implantations F. C. Ceoni, M. A. Rizzutto, M. H. Tabacniks, N. Added, M. A. P. Carmignotto, C.C.P. Nunes,
Y. Ueda, M. Fukumoto, H. Kashiwagi, Y. Ohtsuka (Osaka University)
Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
Dynamic evolution of mixed materials bombarded with multiple ions beams and impurities Tatyana Sizyuk Ahmed Hassanein School of Nuclear Engineering Center.
Ion-Driven Permeation of Deuterium through Tungsten Motivation Permeation experiment Results Next steps A. V. Golubeva, M. Mayer, J. Roth.
R. Doerner, May 9, 2005 PFC Program Review, PPPL PISCES ITER-simulation experiments on Mixed-Materials (Be, C, W) R. P. Doerner, M. J. Baldwin and D. Nishijima.
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 G. S. Oehrlein*, T. Schwarz-Selinger, K. Schmid, M. Schlüter and W. Jacob Interaction of Deuterium.
Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment G.M. Wright University of Wisconsin-Madison, FOM – Institute.
Sachiko Suzuki 1, Akira Yoshikawa 1, Hirotada Ishikawa 1, Yohei Kikuchi 1, Yuji Inagaki 1, Naoko Ashikawa 2, Akio Sagara 2, Naoaki Yoshida 3, Yasuhisa.
Tritium Retention in Graphite and Carbon Composites Sandia National Laboratories Rion Causey Sandia National Laboratories Livermore, CA
*This work was supported by the United States Department of Energy
Olga Ogorodnikova, 2008, Salamanka, Spain Comments to modelling of hydrogen retention and permeation in tungsten O.V. Ogorodnikova Max-Planck-Institut.
Sputter deposition.
Effects of tungsten surface condition on carbon deposition
1 A. Kitamura, H. Iwai, R. Nishio, R. Satoh, A. Taniike and Y. Furuyama Department of Environmental Energy Science, Graduate School of Science and Technology,
Photo physics and photo chemistry of ice films on graphite Department of Applied Physics Chalmers and Göteborg University Dinko Chakarov Johan Bergeld.
Meta-stable Sites in Amorphous Carbon Generated by Rapid Quenching of Liquid Diamond Seung-Hyeob Lee, Seung-Cheol Lee, Kwang-Ryeol Lee, Kyu-Hwan Lee, and.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY 1 Update on Helium Retention Behavior in Tungsten D. Forsythe, 1 S. Gidcumb, 1 S. Gilliam,
Center for Materials for Information Technology an NSF Materials Science and Engineering Center Substrate Preparation Techniques Lecture 7 G.J. Mankey.
The effect of displacement damage on deuterium retention in plasma-exposed tungsten W.R.Wampler, Sandia National Laboratories, Albuquerque, NM R. Doerner.
1 Deuterium retention and release in tungsten co- deposited layers G. De Temmerman a,b, and R.P. Doerner a a Center for Energy Research, University of.
MOLIBDENUM MIRRORS WITH COLUMN NANOGRAIN REFLECTING COATING AND EFFECT OF ION- STIMULATED DIFFUSION BLISTERRING RRC «Кurchatov Institute» А.V. Rogov, К.Yu.Vukolov.
10th ITPA conference, Avila, 7-10 Jan Changes of Deuterium Retention Properties on Metals due to the Helium Irradiation or Impurity Deposition M.Tokitani.
Ion Beam Analysis of the Composition and Structure of Thin Films
Gaetano Granozzi Francesco Sedona (PhD thesis) TiOx NANOSTRUCTURES ON A MONOCRYSTALLINE Pt SUBSTRATE Università degli Studi di Padova Dipartimento di Scienze.
9 th International Workshop on Hydrogen Isotopes in Fusion Reactor Materials Salamanca, Spain, June 2 - 3, Simulation experiments on neutron damage.
1 Lead analysis performed at CERN with EST division group S.Buontempo Lead cleaning procedure Surface analysis Ca-Lead Surface analysis of Lead in contact.
The composition and structure of Pd-Au surfaces Journal of Physical Chemistry B, 2005, 109, C. W. Yi, K. Luo, T. Wei, and D. W. Goodman Bimetallic.
Scanning Tunneling Microscopy Studies of Single-Crystal Niobium Oxidation Natalie A. Kautz, Yichen Yu, Kevin D. Gibson.
Investigation of the Performance of Different Types of Zirconium Microstructures under Extreme Irradiation Conditions E.M. Acosta, O. El-Atwani Center.
Characterization of He implanted Eurofer97
Study of vacuum stability at cryogenic temperature
Tatyana Sizyuk Ahmed Hassanein School of Nuclear Engineering
Secondary electron yield of cryogenic surfaces as a function of physisorbed gases Asena Kuzucan TE-VSC-SCC.
Study of vacuum stability at cryogenic temperature
MODIFICATION OF AZO THIN FILM PROPERTIES BY ANNEALING AND ION ETCHING
Multiscale modeling of hydrogen isotope transport in porous graphite
Presentation transcript:

D retention in O-covered and pure beryllium Matthias Reinelt, Christian Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany Outline: Motivation Experimental results  Interpretation Retention Sample characterisation Mechanisms Outlook 09 /10 July 2007

Investigation of the D retention in Be Motivation 1: ITER C W H,D,T ITER cross section ~ 700 m2 Be Implantation of D into Be first wall Investigation of the D retention in Be System Be – D (  Be – T) Be : fast reaction with O2 and H2O Previous experiments : Often oxygen contaminated surface Investigation of System Be – O – D System Be – D : no data

Motivation 2: Literature Diffusion: ED 0.04 to 2.5 eV Solubility: ES 0.1 to 1 eV Saturation 0.3 to 0.4 D/Be ... [Anderl 1999] 0.1 – 60 keV Retention adjusted for 100eV implantation Possible sources of uncertainties Chemical composition Sample structure Mechanisms Variation of 1-2 ORDERS OF MAGNITUDE

Surface characterization Retention mechanisms Influence of BeO Issues: Retention in pure Be Surface characterization Retention mechanisms Influence of BeO

Experiment: Preparation 1 keV D+ Implantation (Mass separated) Retained quantity Polished, single crystalline Be Cleaning: 3 keV Ar+ XPS/LEIS Annealing (1000 K) BeO coverage < 0.2 ML 1 day @ 10-11 mbar up to 1000 K

Experiment: Retention TPD Temperature Programmed Desorption QMS „Retention“ = TPD/NRA amount Incident amount (measured current) Desorption rate NRA D(3He,4He)p Electron impact heating / TC

Experiment: Desorption Sequential release of D Energy barriers for ... Diffusion Detrapping Recombination Binding states of D Retention mechanisms TPD Temperature Programmed Desorption QMS Desorption rate Electron impact heating / TC

Issue 1: Deuterium retention in pure Be

Retention at RT-implantation 1 keV D (exp.: 3 keV D3+) Maximum concentration: D/Be = 0.35

Supersaturation  Structural modifications Simulation: SDTrim.SP SDTrim.SP not applicable > max. concentration: Supersaturation D/Be = 0.35 Be Erosion rate (sputtering) < Concentration build-up (implantation) Supersaturation  Structural modifications

Retention: Literature

Retention: Elevated temperature Review [Anderl 1999] Be (+ BeO) 1 and 1.5 keV pure Be (1 keV)

Summary: Retention 1 keV Deuterium  clean beryllium ~80% Retention at low fluences Saturation: Retained areal density 2·1017 D cm-2 (reached at 2·1017 D cm-2 incident fluence) Maximum local concentration D/Be=0.35 Local supersaturation in the bulk at 1·1017 D cm-2 Nearly constant retention up to 530 K No significant influence of BeO coverage

Issue 2: Surface characterization

Substrate properties: REM Single crystalline (11-20) Be disk (after several hours at 1000 K in UHV)

Substrate properties 90°, Zoom

Substrate properties (1010) (1120) (0001) T  1000 K, several hours: Recrystallisation to low-indexed surfaces Formation of facetted crystallites  substantial process

Substrate properties Cleaning: Cycles of 3 keV Ar+ / 1000 K  Recrystallisation + Erosion

Substrate properties: Deuterium irradiation Cycles of Cleaning D Implantation Degassing 1000 K

Substrate properties: Morphology AFM 500 nm Cycles of Cleaning D Implantation Degassing 1000 K + Recrystallisation + Erosion + Structural modifications

Substrate properties: Elemental composition (45°, 500 eV He+) Be + 3 ML BeO (surface layer) clean Be surface + 3 ML BeO (buried)  Segregation of Be at the surface  Annealing (Recrystallisation) of the surface above 1000 K

Summary: Surface characterisation Annealing T  1000 K Diffusion of Be  Recrystallisation Segregation of Be to the surface  Coverage of thin BeO surface layers by Be T  1000 K + ion bombardment Erosion processes + recrystallization to single crystallinity + structural modifications

Issue 3: Retention mechanisms

Temperature Programmed Desorption NRA: retained amount pure, annealed Be at RT 1 keV D+ implantation saturation

Increasing fluence Low-temp. release: Structural modifications High-temp. release: Trapping in defects (intrinsic or ion-induced) local saturation of binding states

Increasing fluence SDTrim.SP: Supersaturation D/Be = 0.35

Implantation at elevated temperature Expectation: * no occupation of low temperature states * retention loss of 30 % measured: only 14% retention at elevated temperature is higher than expected D from low temperature stage is trapped differently Phase transformation ? Population / creation of different binding states 300 K 530 K

Issue 4: Influence of BeO coverage

Influence of BeO coverage * Closed BeO coverage (3 ML) has no (measurable) effect on retention * No shift of desorption states  no recombination-limited desorption mechanisms * Additional state at 750 K: BeO – D ?

Modelling Desorption spectrum High temperature stage Low temperature stage Polanyi-Wigner-Equation (Arrhenius expression) High temperature stage Rate-limiting step is detrapping from bulk sites  TMAP7 ... Desorption of surface adsorbed gases Diffusion, trapping and surface recombination

High temperature stage: TMAP7 Parameters: Diffusivity, Solubility, Trapping / Detrapping rates, Trap concentrations,... Vacuum const. 10-10 mbar surface flux rate dependent D Be bulk with 2 traps rate dependent, heating surface flux

High temperature stage: TMAP7  Model is reasonably accurate  Does NOT reproduce all details ! diffusivity, solubility, traps, profile... ... broaden peaks Microstructure ?

Low temperature stage: PW Input of measured temperature ramps into simulation !

Low temperature stage: PW

Energies: System Be – D E (D-Atom) Be bulk Vacuum E atomic D = 0 eV Surface Structural modifications E atomic D = 0 eV Ion induced defects

Energies: System Be – D E (D-Atom) Surface ED = 0.29 eV [Abramov] D atomic E0≡ 0 +0.2 eV ES = -0.10 eV EAd = -0.85 eV [Küppers] -1.5 eV -2.1 eV -2.2 eV D2 molecular EBE (1/2 D2) = -2.278 eV Surface

Summary: Retention mechanisms Retained amount < 1·1017 D cm-2  Trapping in intrinsic / ion induced defects Supersaturation > 1·1017 D cm-2  Creation of structural modifications  Binding of D to these modifications Elevated temperature  Change of the structural modifications Thin BeO surface layers  Surface has no recombination-limiting influence  Binding as BeO-D

✔ Summary Projection for ITER ✔ Retention of the pure Be wall: net erosion areas No isotope effects Maximum retention for 1 keV / 0° incidence < 7g T Projection for ITER Retention of Be wall Mixed materials pure Be ✔ ✔ BeXW Be2C BeO WXC WOX Retention in Be with mixed material surface layers

Summary Projection for ITER Implantation / Retention in ... Mixed material surface layers Mixed materials Be – O – C – W Be2C BeO BeXW pure Beryllium pure Substrate

Road map Expermental data for Be – D Experimental data: TPD+NRA+XPS+ISS / REM+AFM Modelling: TMAP7 MD / DFT – Calculations Mixed Materials Inventory and desorption from mixed materials: THICK layers of BeO / Be2C / BeXW Substrate evolution with implantation / temperature ramping: Ternary systems, Ultrathin carbon layers Mixed material surface layers THIN surface layers of BeO / Be2C / BeXW Retention + Mixing / Diffusion / Phases, ...