Presentation is loading. Please wait.

Presentation is loading. Please wait.

Characterization of He implanted Eurofer97

Similar presentations


Presentation on theme: "Characterization of He implanted Eurofer97"— Presentation transcript:

1 Characterization of He implanted Eurofer97
Inês Carvalho, Henk Schut, Alexander Fedorov, Natalia Luzginova, Pierre Desgardin, Jilt Sietsma Edinburgh, 4-5 June 2013

2 Outline Project overview Techniques Experimental details Results
Positron annihilation Thermal desorption spectroscopy Experimental details Results Helium implantations keV and 2 MeV Helium release mechanisms Example: 500 keV, He/cm2 Overall picture Final remarks & Future Work

3 Project Overview Eurofer97 (Fe - 9Cr - 1W - 0.2V - 0.1Ta - 0.1C wt.%)
Correlation of microstructure and mechanical properties Understanding structural defects that affect the mechanical properties Evolution of defect structures formed due to clustering and coalescence of POINT DEFECTS Helium-vacancy clusters Helium-filled bubbles Interstitial loops Thermal desorption spectroscopy (TDS) defect populations thermal stabilities of defects Positron annihilation thermal evolution of free-volume related defects Electron Microscopy microstructure of ion implanted and (neutron) irradiated samples

4 Project Overview Use of thermal desorption spectroscopy (TDS) and electron microscopy on Eurofer97 neutron irradiated material First approach: reproduction of neutron irradiation conditions He implantation with 500 keV and 2 MeV energies Study of defect structures by positron annihilation and Thermal Desorption Spectroscopy (TDS) After: comparison of results – He implanted vs. neutron irradiated samples Reference Material Study of pre-existing defects Ion Implantation (He) Simulation of neutron irradiation defects Neutron Irradiation Real irradiation conditions now

5 Techniques

6 Techniques – VEP Positron annihilation 𝑬=𝟓𝟏𝟏 𝒌𝒆𝑽± 𝒄 𝒑 ∕∕ 𝟐
Variable energy positron beam (VEP) 22Na source Energy up to 25 keV (~ 1µm depth for Fe) Thermalization followed by trapping and annihilation Emission of 2𝛾 of 511 keV Lifetime of ~ 200 ps 𝑝 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 ≪ 𝑝 𝑐𝑜𝑟𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 W parameter  core electrons S parameter  free electrons  vacancies, dislocations, free volumes 𝑬=𝟓𝟏𝟏 𝒌𝒆𝑽± 𝒄 𝒑 ∕∕ 𝟐

7 Techniques – VEP Positron annihilation 𝑬=𝟓𝟏𝟏 𝒌𝒆𝑽± 𝒄 𝒑 ∕∕ 𝟐
Variable energy positron beam (VEP) 22Na source Energy up to 25 keV (~ 1µm depth for Fe) Thermalization followed by trapping and annihilation Emission of 2𝛾 of 511 keV Lifetime of ~ 200 ps 𝑝 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 ≪ 𝑝 𝑐𝑜𝑟𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 W parameter  core electrons S parameter  free electrons  vacancies, dislocations, free volumes 𝑬=𝟓𝟏𝟏 𝒌𝒆𝑽± 𝒄 𝒑 ∕∕ 𝟐

8 Techniques - TDS Thermal desorption spectroscopy
Heating rate of 0,33 K/sec Ramp anneal from 300 K up to 1500 K Ultra high vaccum Temperature of released helium related to the type of trap and thermal stability (He-defect binding energy) Amount of He released associated with defect concentration

9 Experimental details

10 Experimental TDS PA Energy 500 keV 2 MeV Doses (He/cm2) 1 x 1014-1017
Eurofer97 - Fe-9Cr-1W-0.2V-0.1Ta-0.1C (wt.%) Tempered martensitic structure Ion beam Helium implantation (RT) Sample size: 1.2 x 1.2 x 0.05 cm2 Measurements Positron annihilation DB TDS + in situ DB annealing Energy 500 keV 2 MeV Doses (He/cm2) 1 x Current (nA) 270 – 280 Time (h) 1 - 15 Dpa 0.08 – 0.8 0.07 – 0.7 Ion range (µm) ~ 1 ~ 3 Positron range Schematics of implanted sample PA TDS TRIM calculation for 1 x 1015 He/cm2

11 Experimental Techniques
Thermal desorption spectroscopy Annealing from 300 K to 1500 K Heating rate of 0.33 K/sec Vacuum of Torr Positron Beam Doppler Broadening In situ annealing with similar annealing rate to TDS Annealing duration of 5 min Oven cooling Measurement at room temperature

12 Results He implantations 500 keV & 2 MeV RT, 1014-1017 He/cm2

13 Implantation Current (µA)
VEP 500 keV and 2 MeV, He/cm2 Positron range Implantation Current (µA) Dose (He/cm2) 500 keV 2 MeV 1014 0.12 0.31 1015 0.28 1016 0.27 0.21 1017 1.63 2.56

14 VEP - 500 keV and 2 MeV, 1014-17 He/cm2 Annealing study 500 keV
Increase of S parameter with increasing dose  Dose effect !!! Similar behaviour not only within same implantation energy but also comparing both energies 500 keV VEP – decrease of S for 1017 He/cm2 Not observed in annealing study

15 TDS – 500 keV & 2 MeV Helium release

16 TDS – 500 keV & 2 MeV retention: 25-80% retention: 75-110%

17 Interpretation of results Example: 500 KeV, 1016 He/cm2
Overnight bake out Below 300 K Interstitial He is mobile below RT 300 K HELIUM IMPLANTATION

18 Interpretation of results 500 KeV, 1016 He/cm2
He in substitutional position Vacancy assisted diffusion of He Annealing of vacancies and vacancies clusters 1 µm

19 Interpretation of results 500 KeV, 1016 He/cm2
Dissociation of overpressured HenVm (n < m) clusters Possible re-trapping of He Formation of bigger clusters Stability of S level mainly due to HeV and stable HenVm pairs 1 µm

20 Interpretation of results 500 KeV, 1016 He/cm2
Ostwald ripening – formation of bubbles Increase of S for deeper implantation region Smaller diffusion length of He before retraping Dissociation of HeV pairs Phase transition of Eurofer97 (1160 K) 1 µm

21 Interpretation of results 500 KeV, 1016 He/cm2
Release of He from bubbles Dissociation vs. Migration mechanism 1 µm

22 Interpretation of results Overall picture

23 Final remarks Higher implantation dose leads to an increase in the S parameter Also observed in the positron annealing study Repetition of implantation 500 keV, 1017 He/cm2 necessary Similar TDS spectra shape for all doses Increasing He release up to 1500 K Phase transition/HeV dissociation in the range 1100 – 1200 K Peak on the left of the phase transition peak Helium release mechanisms are identified

24 Future work Continuation of He implantations Desorption experiments
He implanted samples Neutron irradiated samples TEM Correlation of microstructure and mechanical properties


Download ppt "Characterization of He implanted Eurofer97"

Similar presentations


Ads by Google