JET PFC Analysis, TFFT and the ILW

Slides:



Advertisements
Similar presentations
Institute for Plasma Physics Rijnhuizen Heat load asymmetries in MAST G. De Temmerman a,b, A. Kirk a, E, Nardon a, P. Tamain a, A. Thornton a a Present.
Advertisements

Report IPP Garching EU Task Force PWI Meeting, Cadarache Oct Max-Planck-Institut für Plasmaphysik compiled by Arne Kallenbach (IPP - EU-PWI.
Progress with PWI activities at UKAEA Fusion GF Counsell, A Kirk, E Delchambre, S Lisgo, M Forrest, M Price, J Dowling, F Lott, B Dudson, A Foster,
1 Th LoarerGas balance and fuel retention – EU TF on PWI – 29 October 2007 Madrid Th Loarer with contributions from D Borodin, C Brosset, J Bucalossi,
Report on SEWG mixed materials EU PWI TF meeting Madrid 2007 V. Philipps on behalf of SEWG members Mixed material formation is a among the critical ITER.
A new look at the specification of ITER plasma wall interaction and tritium retention J. Roth a, J. Davis c, R. Doerner d, A. Haasz c, A. Kallenbach a,
ITER & dust Dust = major issue in term of ITER safety In vessel dust quantities: extrapolation from current experiments In vessel dust diagnostics & removal.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,
J P Coad for TFFT 5 November 2009 Task-Force Fusion Technology Status and Main Achievements in 2009 Task Force – Fusion Technology.
Th Loarer - SEWG on Fuel retention – JET, July Th Loarer with special thanks to S Brezinsek, J Bucalossi, I Coffey, G Esser, S Gruenhagen.
WP10-PWI (02)/TEKES/BS(PS) Characterization of retention mechanisms in AUG Monitoring meeting of the EFDA PWI SEWG on Gas Balance and Fuel Retention,
SEWG Meeting HIGH-Z, Ljubljana, October 2009 I. Tungsten distribution on limiters after WF 6 injection in TEXTOR II. SEM and EDX of Melted Tungsten Rods.
Kazuyoshi Sugiyama, SEWG meeting, Culham, July Outline: 1.Introduction 2.Experimental procedure 3.Result 4.Summary Kazuyoshi Sugiyama First.
ERO modelling of local 13 C deposition at the outer divertor of JET M. Airila, L. Aho-Mantila, S. Brezinsek, P. Coad, A. Kirschner, J. Likonen, D. Matveev,
EU-PWI TF Task Force meeting, Cadarache Oct EU-PWI CONTRIBUTIONS FROM IFP F. Ghezzi Istituto di Fisica del Plasma, C.N.R., EUR/ENEA/CNR Ass.,
SIMS and RBS analysis of the recent 13 CH 4 experiment J. Likonen, P. Coad, A. Hakola, D. Hole, M. Rubel, J. Strachan, A. Widdowson Joint TFE-SEWG meeting.
K. Krieger, SEWG Meeting on Material Migration and ITER Material Mix, JET, Max-Planck-Institut für Plasmaphysik Carbon local transport and redeposition.
SEWG Fuel Retention July 2008 © Matej Mayer Fuel retention in ASDEX Upgrade tungsten coatings M. Mayer, M. Balden, K. Krieger, S. Lindig, O. Ogorodnikova,
CIPS SEWG FR, JET 2008C. Hopf O 2 /He glow discharge cleaning: Experience at IPP Christian Hopf, Volker Rohde, Wolfgang Jacob Max-Planck-Institut für Plasmaphysik.
Kazuyoshi Sugiyama, SEWG meeting on Fuel retention, Garching, July Contribution of Boron on the D retention in the AUG full-W wall regime Max-Planck-Institut.
SEWG Gas Balance 2007 © Matej Mayer First results on deuterium depth profiling in W tiles M. Mayer 1, V.Kh. Alimov, V. Rohde 1, J. Roth 1, A. Herrmann.
Tungsten distribution on limiters after WF 6 injection in TEXTOR M. Rubel, D. Ivanova Alfv é n Laboratory, Royal Institute of Technology, Association EURATOM.
1TPL Dismantling Project Review 08/12/06 Bernard Pégourié TORE SUPRA Association EURATOM-CEA D program: Specific experiments before dismantling Purpose:
Joint SEWGs-TFE meeting S. Brezinsek22/07/2008 TF E Impact of N 2 on carbon chemistry in JET S. Brezinsek, Y. Corre and TFE.
Institut für Energieforschung - Plasmaphysik EURATOM Assoziation – FZJ TEC A. Litnovsky et al., Meeting of the EU TF PWI SEWG on mixed materials, JET,
EU PWI Task Force V. Philipps, SEWG mixed materials, JET ITER-like Wall Project : Material choice, issues to investigate and role of new SEWG ITER-like.
1. Qualifying carbon as PFC Erosion (see report S. Brezinsek ) along plasma wetted areas, effect of substrate Local C migration to gaps Fuel retention.
V.Philipps, SEWG Gas balance and fuel removal, JET, , Association EURATOM – FZJ Effect of disruptions on fuel release from JET walls V. Philipps,
TFE Th Loarer – SEWG – 12 September Euratom Th Loarer V Philipps 2, J Bucalossi 1, D Brennan 3, J Brzozowski 4, N Balshaw 3, R Clarke 3, G Esser.
1B. PégouriéDITS progress report 27/04/07 Euratom EXPERIMENTAL CAMPAIGN No reliable estimation of the wall inventory WI ~ ??? D atoms (Tsitrone,
D retention and release behaviour of Be/C/W mixed materials
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
Member of the Helmholtz Association Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ A. Litnovsky et al., Progress report on the.
Mixed materials in JET 2006 J P Coad Present JET situation Deposited films at the inner divertor (plasma-facing surfaces) Films deposited in shadowed areas.
PWI questions of ITER review working groups WG1 and WG8 : Materials Introduction EU PWI TF V. Philipps, EU PWI TF meeting, Oct 2007, Madrid V. Philipps,
R. Doerner, EU SEWG meeting, JET. July 9-10, 2007 Recent Results from PISCES Program R. P. Doerner, M. J. Baldwin, G. De Temmerman, J. Hanna, D. Nishijima,
Member of the Helmholtz Association Carbon based materials: fuel retention and erosion under ITER-like mixed species plasma conditions Arkadi Kreter et.
P. Coad, J. Likonen, H. Bergsåker, M. Rubel, I. Uytdenhouwen, A. Widdowson JET mixed Be/C/O layers SEWG meeting on mixed materials, , JET.
1E. Tsitrone PWI TF meeting, 27-29/10/2008, Frascati Euratom 2009 WP for the PWI TF : Tasks agreements and priority support The EU PWI TF under new EFDA.
Transient heat load tests with Nd:YAG laser Main results of EFDA TW3-TPP/ERCAR PWI Task Force meeting – CEA Cadarache October 2005 Douglas dHulst,
No 1 V. Philipps, SEWG Fuel retention, July 2010, Garching Joint TEXTOR, MAGNUM and PISCES experiments on retention in W and mixed W/C system V. Philipps,
Institute for Plasma Physics Rijnhuizen D retention in W and mixed systems in Pilot-PSI G. De Temmerman a, K. Bystrov a, L. Marot b, M. Mayer c, J.J. Zielinski.
1 PWI - related work at VR Marek Rubel (VR) Projects within ILW : Beryllium coatings for inner wall cladding (with MEC, UKAEA, FZJ, UCSD, TEKES) Development.
1TPL dismantling project review C. Brosset TORE SUPRA Association EURATOM-CEA 2006/12/08 TPL dismantling project review D program : analysis for D content,
Examples of ITER CODAC requirements for diagnostics
ITER Organization, Cadarache, France
9th International Workshop on Hydrogen Isotopes in Fusion Reactor materials, Salamanca, Spain, June 2 -3, Behaviour of tritium accumulated in the.
Material Erosion and Redeposition during the JET MkIIGB-SRP Divertor Campaign A. Kirschner, V. Philipps, M. Balden, X. Bonnin, S. Brezinsek, J.P. Coad,
Y. Ueda, M. Fukumoto, H. Kashiwagi, Y. Ohtsuka (Osaka University)
Physics of fusion power
Physics of fusion power Lecture 8 : The tokamak continued.
PFC meeting 9-11 May 2005 PPPL CDX-U E-beam experiments on CDX-U Presented by Dick Majeski R. Kaita, T. Gray, H. Kugel, J. Spaleta, J. Timberlake, L. Zakharov.
J.P. Coad 1 H Workshop, Salamanca 3 June 2008 Local deposition of 13C tracer at the JET MkII-SRP outer divertor J Paul Coad Hydrogen Workshop, Salamanca,
Physics of fusion power Lecture 10: tokamak – continued.
W coating of CFC tiles for the JET new wall - Task Agreement: JW6-TA-EP2-ILC-05 Manufacturing and testing of W-coated CFC tiles for installation in JET.
Depth-profiling and thermal desorption of hydrogen isotopes for plasma facing carbon tiles in JT-60U (Long term hydrogen retention) T. Tanabe, Kyushu University.
14 Oct. 2009, S. Masuzaki 1/18 Edge Heat Transport in the Helical Divertor Configuration in LHD S. Masuzaki, M. Kobayashi, T. Murase, T. Morisaki, N. Ohyabu,
Introduction of 9th ITPA Meeting, Divertor & SOL and PEDESTAL Jiansheng Hu
Photonic T removal techniques in the EU G Counsell 1, P Coad 1, C Grisolia 2, A. Semerok 3, A Widdowson 1 1 EURATOM/UKAEA Fusion Association, Culham Science.
Background Long term tritium retention is one of the most critical issues for ITER during the tritium phase. It is mandatory to evaluate the long term.
Deposition in the MKII - Gas Box Divertor Deposition in Septum M. Rubel, P. Coad, J. Likonen OUTLINE General deposition pattern on MKII-GB tiles Septum.
Overview of recent work on carbon erosion, migration and long-term fuel retention in the EU-fusion programme and conclusions for ITER V. Philipps a Institute.
ELM propagation and fluctuations characteristics in H- and L-mode SOL plasmas on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga.
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
Deposition in the MKII - Gas Box Divertor Deposition in Septum
Temperature Measurements of Limiter Surfaces at High Heat Flux in the HT-7 Tokamak H. Lin, X.Z. Gong, J. Huang, J.Liu, B. Shi, X.D. Zhang, B.N. Wan,
Surface Analysis of Graphite Limiter and W-coating Testing on HT-7
LH Generated Hot Spots on the JET Divertor
An Overview of Erosion-Deposition Pattern in JET with ITER-Like Wall
ITER consequences of JET 13C migration experiments Jim Strachan, PPPL Jan. 7, 2008 Modeled JET 13C migration for last 2 years- EPS 07 and NF paper in prep.
Presentation transcript:

JET PFC Analysis, TFFT and the ILW J P Coad EURATOM/UKAEA Culham Division, Abingdon, UK Introduction to TFFT and interaction with JET Summary of programme of analysis of JET samples removed in 2004 Plans for JET samples removed in 2007 Update on progress on the JET ITER-like wall

JET FT AGHS Activation models T spreading Shutdown dose Tritium in Tokamak Tritium processes & Waste management Test Beds Neutronic & safety Plasma Facing Components Engineering AGHS Activation models T spreading Shutdown dose rate calculation Collection of Operating experience Dust conversion factor of dust Fatigue testing W coatings Glow improvements Active IR thermography JET Flakes Characterisation JET Tiles Improvement of gas balance JET WDS system T removal From tiles Micro gas chromatography Material transport Retention in castellation Microanalysis of cross section detritiation Erosion deposition LIBS Heating of tiles In JET NB test bed AES/XPS T & Be JET tiles Fibres & neutrons

JET FT 2008 Benchmarking of CAD to MCNP interface Shutdown dose Tritium in Tokamak Tritium processes & Waste management Test Beds Neutronic & safety Plasma Facing Components Engineering Benchmarking of CAD to MCNP interface Shutdown dose rate prediction: In situ optical Dust measurements Advanced study for detritiation of non-plasma facing metals Be Tiles detritiation Material transport + erosion tungsten erosion in the JET divertor Microanalysis of plasma deposited layers tritium profile in carbon-based plasma-facing components LIBS Installation and commissioning of the plasmatron collection of data (VV & BeHF) characterisation of mirrors Laser lock in Inspection of bolometer

Tasks on Fusion Technology 2006-2007 and 2008 Plasma Facing Components (10) Test Beds Tritium in Tokamak (2) Tritium process and waste management (4) Engineering (4) Neutronics and Safety (2) 22 new tasks have been launched during WP 2006-07 15 tasks on going from previous years and 22 tasks launched during the year 2006 12 Presently FT has 37 running tasks For the FT WP-2007-08 16 new tasks have been approved for a total budget of ~2.4 m€ More and more papers published and/or presented at conferences

Active IR Thermography in metal environment Goal: get rid of reflected flux and measure real surface T Heat pulse = perturbation of T0 2 l measurements and ratio  surface T° (Material Emissivity constant!) (CEA, Semerok, Gauthier)

LIBS to characterise divertor PFC

test of laser detritiation on JET tiles Goal : test in BeHF + assessment of efficiency (CEA, Semerok and UKAEA, Widdowson and Coad)

Cleaning JET tiles by Laser Ablation total removal of film some damage of the substrate sharp boundary at edge of treated zone 300 microns Laser treated zone CFC substrate

Detritiation : inside gap generator Goal : clean & detritiate castellations D=60 mm d= 0.8 mm However, pattern not explained Power: 130W, Pressure: 69mbar

Retention in castellations Goal: characterise the retention in Be limiter castellations (VR, Rubel)

Brief plasmatron facility description Cold self-sustained volumetric plasma Volume: 18 litres Target diameter: ~25cm Ion energies: 20 - 500 eV Magnetic field: 0.2T Pulse duration: steady state Flux density target: ~ 1020-1021 ions/m2.s Designed for PWI studies Installation for operation in glove box A gas mixture with a certain D/T ratio can be created in a volume by measuring the pressure and the mass flow of D/T coming from volumes containing D and T. Both loops have a separate control system. Tominetti S. et al., Vuoto 26 (1997)

Plasma chamber UHV 1 UHV1 main pumping UHV 3 UHV3 differential pumping I insulation C A C cathode A anode CW CW cooling water T T target TC TC temperature control PM PM permanent magnets Gas, plasma, secondary ions and neutrals analyser Gas inlet Sedano L. et al., Phys. Stat. Sol. 188 (2001)

JET MkII-SRP Divertor used 2001-2004 Task Force E JET JET MkII-SRP Divertor used 2001-2004 Key: 1/11 means tile 1, sample 11 Septum Replacement Plate (SRP) Campaign included: 4 weeks reversed field trace tritium experiment 13C-methane puffing on last day operation with JET wall temperature at 200°C

Inner Divertor Analysis SIMS profiles sample 3/8 exposed 1998-2004 Inner part (to right of line): similar to film deposited 1998-2002 Outer part: (to left of line) High Be + other metals (e.g. Ni) except close to surface Little 13C at surface Tile 1 Tile 3 Tile 4 Task Force E JET Film deposited 2001-2004 also has high Be/C ratio, although operations were at 200°C He-fuelled campaign must be responsible for outer layer from 1999-2001 Film structure may be different allowing trapping of large amount of D

Tile 3: Deposition layer fills up the holes of the W layer G3B top bottom Tile 3: Deposition layer fills up the holes of the W layer

Micro-analysis cross section Goal: Composition of layers of 100µm thick via micro beam analysis of polished cross sections. (% level of main constituents: C, D, O, Be and SS, spatial resolution of a few μm) D2 mapping (Tekes, Likonen and Emmoth, VR)

Tile 1-5, sputter cleaned

Tile 1-5 before and after sputter cleaning

Erosion/deposition at the outer divertor Task Force E JET Tile 8 Tile 7 Tile 6 Shadowed region Picture from previous divertor campaigns in JET as follows: Erosion at outer divertor wall (tiles 7 and 8) [contrast to inner] ~200 μm deposition on sloping part of tile 6 [same as inner] No significant deposition in shadowed corner [contrast to inner] New data from MkII-SRP campaign from 13C puffing IR measurements Analysis of tiles Deposition monitors, louvre clips from shadowed area

Deposition at outer divertor Task Force E JET Deposition at outer divertor 4 weeks reversed field operation gave deposition at outer divertor (clear from the film effect in the infra-red camera) During methane puffing local re-deposition observed Deposition in outer shadow region [c.f. inner]: Film on Deposition monitor slits ~20 μm [c.f. 90 μm] Deposit inside monitor box 18 μm [c.f.35 μm], or 8.3 1019 atoms cm-2 [c.f. 25 1019 atoms cm-2] Film on tile (SIMS) 8 μm [c.f. 80 μm] Film on tile (section) 40 μm [c.f. 120 μm] Louvre clips off-gas 0.49 MBq/day [c.f. 0.63 MBq/day] Tile 8 Tile 7 Tile 6 Shadowed region

G7B 8 7 6 5 4 3 2 1a 1 0a

W Erosion Outer divertor: SEM images Inhomogeneous erosion Full erosion of W in some places (IPP, Majer)

13C-methane puffing experiment in 2004 Task Force E JET 13C-methane puffing experiment in 2004 31 similar pulses on last day of operation ELMy H-mode discharges:- BT 1.2T, IP 1.2 MA, ~7.5 MW additional heating Total of 4.3 1023 molecules 13C-methane puffed in outer divertor from 48 locations Approximate line of W-stripe is shown as white dashes

Task Force E JET Field line plot showing strike points and SOL region for the 13C-puffing experiment Occasional sweeps of strike-point position for Langmuir probe data Collector probe on reciprocating probe in SOL at top of machine

Amounts of 13C measured on divertor tiles by SIMS and IBA Task Force E JET Tile 1 Tile 3 Tile 4 Tile 8 Tile 7 Tile6 Amounts of 13C measured on divertor tiles by SIMS and IBA Note: Measurements on one poloidal line have been extrapolated, assuming toroidal symmetry Tile Number 13C amount 1 2.7% 3 0.5% 4 3.8% SRP ? 6 2.5% 7 10.9%* 8 6.1% Total 26.5% * based on average of two poloidal scans SRP

Local deposition of 13C on G3B Total number deposited 13C in this area is ~215 x1018 atoms Tungsten stripe 13C injection 20mm Cores cut for SIMS analysis 19-23(max) x1018 atoms/cm2 13-18.9 x1018 atoms/cm2 10-12.9 x1018 atoms/cm2 7-9.9 x1018 atoms/cm2 1-6.9 x1018 atoms/cm2

Modelling of the 13C puffing for the inner divertor Task Force E JET Modelling of the 13C puffing for the inner divertor Method EDGE2D follows injected 13C atom trajectories with NIMBUS EDGE2D ELM model of Kallenbach used (modified for smaller ELMs) effects of sputtered carbon and re-erosion not included impurity transport coefficients in private flux region chosen 10x SOL value SOL flows in main chamber created by external force, classical drifts important in private flux region 3 paths dominate the 13C migration most of carbon re-deposited on the outer target a few % migrates via the main chamber SOL to the inner target (as also seen on a reciprocating probe at the top of the machine), and accounts also for the deposition on the inner baffle a few % migrates via the private flux region by action of ExB drift to vicinity of inner strike point

J Strachan modelling for 13C experiment

Conclusions from 2004 samples Task Force E JET Conclusions from 2004 samples Deposition at the inner divertor is not sensitive to wall temperature Significant erosion of W-markers has been observed at the outer divertor, of interest to the ITER-like Wall Project at JET. Infra-red temperature measurements clearly show when thin films are forming at the outer divertor Some deposition occurred in shadowed region at outer corner in 2001-4, but the balance between erosion and deposition in this region requires further exploration 13C-methane was puffed at the outer divertor in 2004, and preliminary modelling shows reasonable agreement with deposition at inner divertor

72μm 67cm3 26μm 7μm 44cm3 10μm 10μm 38μm 464cm3 33μm 19cm3 99cm3 41μm 105cm3 24cm3 60g on louvre 233cm3 17cm3 18μm 300μm 32μm

Tile analysis programme for tiles removed in the 2007 shutdown Objectives: Distribution of 13C injected in April 2007 at outer mid-plane Erosion of W-coatings in critical areas for ILW Erosion/deposition behaviour to compare with QMB data Results of rotating collector experiment (inc. Be evaporation) Mirror tests for ITER C-redeposition at load-bearing tile

Cross-section of JET 2005-7

JET-HD divertor 2005-

Quartz Micro-balance at the inner divertor

JET ITER-Like Wall Update on materials, timescales Development of W coatings on CFC Be coatings on inconel Be markers

View inside JET 2005-7

Beryllium Coatings on Cast Inconel (I) Evaporated 8 mm Be coating on inner wall Inconel cladding Estimated maximum load in JET: 0.5 MW/m2 in 20 s corresponding to 10 MJ/m2 Steps in the material qualification process: Optimisation of the deposition process (Nucl. Fuel Plant, Romania). Pre-characterisation of layers: purity, structure, uniformity. High Heat Flux testing (Forschungszentrum Jülich). Characterisation after testing. HHF testing in JUDITH to determine the layer durability limits: Screening test by stepwise increase of power density: 0.4 – 3 MW/m2. Cyclic test: 50 consecutive loads of 1.0MW/m2 for 10 s. Message: No damage to layers exposed to the energy load of 19.8 MJ/m2. 200 700 5 mm Original surface Tested: 1.8 MW/m2, 11 s Test: 1.8 MW/m2, 11 s

Beryllium Coatings on Cast Inconel (II) Energy density [MJ/m2] extrapolation, ~11 s pulse on 3.5 mm Inconel case ~ 11 s pulses, thickness 3.3 ~ 3.6 mm 6.2 s pulse, thickness 4 mm ~ 11 s pulses, thickness > 4.0 mm Surface Temperature versus Energy Density Temperature [oC] SUMMARY OF RESULTS: High uniformity and purity of coatings (oxygen only in a thin surface layer). Layers survive power loads of 2.55 MW/m2 in 6.2 s (18.1 MJ/m2) Melting of beryllium observed above 3 MW/m2. No damage by 50 thermal cycles of 1 MW/m2 for 10 s each (10 MJ/m2 pulses). Conclusion: The layers meet operational requirements for JET-ILW.

Erosion of Beryllium Coatings on Cast Inconel: Exposure of Be to Deuterium Plasma in PISCES (UCSD) GA & Romanian Be coatings show increased YBe’s at higher Eion compared to Poly Crystalline(PC)-Be. PISCES PC-Be data scaled (a) to Eckstein’s value D.Nishijima, J.Hanna, R.Doerner

Development of Beryllium Marker Tiles (I) AIM: The assessment of beryllium erosion from the main chamber wall (limiters) 30 mm 28 mm Be coupon with marker coating. For HHF test coupons are with a hole for a thermocouple. Beryllium Tile (3 cm) Nickel interlayer (2-3 mm) Be layer (7-9 mm) Steps in the R & D process Production of optimised layers by Thermionic Vacuum Arc method High Heat Flux testing Broad characterisation of layers before and after testing. Main Result of HHF test: Layers withstand without damage 4.5 MW m-2 for 10 s.

Beryllium Marker Tiles (II) SIMS depth profiles Fresh Be test coupon with marker layers Topography of Be coating After HHF test

Remaining Work: Produce and Install Tiles in JET Inner Wall Structure with Location of Marker Tiles

Conclusions Analysis of tiles removed in 2004 shutdown almost complete Analysis has started on a new poloidal selection of tiles removed in 2007 Preparations are in hand for the ILW installation in 2009-2010, including solid Be and W tiles, Be coatings on inconel, and marker tiles.