A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.

Slides:



Advertisements
Similar presentations
Subaru AO in future. Outline Overview of AO systems at Mauna Kea and in the world. Ongoing plan of AOS at Subaru and Mauna Kea. What’s in future.
Advertisements

GLAO Workshop, Leiden; April 26 th 2005 Ground Layer Adaptive Optics, N. Hubin Ground Layer Adaptive Optics Status and strategy at ESO Norbert Hubin European.
RASC, Victoria, 1/08/06 The Future of Adaptive Optics Instrumentation David Andersen HIA.
Adaptive Optics1 John O’Byrne School of Physics University of Sydney.
Thomas Stalcup June 15, 2006 Laser Guidestar System Status.
Page 1 Lecture 12 Part 1: Laser Guide Stars, continued Part 2: Control Systems Intro Claire Max Astro 289, UC Santa Cruz February 14, 2013.
The Project Office Perspective Antonin Bouchez 1GMT AO Workshop, Canberra Nov
An Introduction to Adaptive Optics Presented by Julian C. Christou Gemini Observatory.
Laser guide star adaptive optics at the Keck Observatory Adam R. Contos, Peter L. Wizinowich, Scott K. Hartman, David Le Mignant, Christopher R. Neyman,
Laser Guide Stars by Roberto Ragazzoni INAF – Astronomical Observatory of Padova (Italy)
Na- Laser guide star AO with dynamical refocus
LBT AGW units Design Review Mar.2001 General Concept Performance specifications and goals The off-axis unit The mechanical support structure The control.
PILOT: Pathfinder for an International Large Optical Telescope -performance specifications JACARA Science Meeting PILOT Friday March 26 Anglo Australian.
Adaptive Optics and Optical Interferometry or How I Learned to Stop Worrying and Love the Atmosphere Brian Kern Observational Astronomy 10/25/00.
Aug-Nov, 2008 IAG/USP (Keith Taylor) ‏ Instrumentation Concepts Ground-based Optical Telescopes Keith Taylor (IAG/USP) Aug-Nov, 2008 Aug-Sep, 2008 IAG-USP.
Low order wavefront sensor trade study Richard Clare NGAO meeting #4 January
1 Laser Guide Star Wavefront Sensor Mini-Review 6/15/2015Richard Dekany 12/07/2009.
The SOAR Telescope MSU’s Laboratory for Astronomical Discovery.
Keck Next Generation Adaptive Optics Team Meeting 6 1 Optical Relay and Field Rotation (WBS , ) Brian Bauman April 26, 2007.
PALM-3000 PALM-3000 Instrument Architecture Antonin Bouchez PALM-3000 Requirements Review November 12, 2007.
NGAO Status R. Dekany January 31, Next Generation AO at Keck Nearing completion of 18 months System Design phase –Science requirements and initial.
An Introduction to Adaptive Optics Mike Hein PH 464 – Applied Optics Winter 2005.
MCAO A Pot Pourri: AO vs HST, the Gemini MCAO and AO for ELTs Francois Rigaut, Gemini GSMT SWG, IfA, 12/04/2002.
Next generation wide field AO (GLAO) and NIRMOS for Subaru Telescope.
Aug-Nov, 2008 IAG/USP (Keith Taylor) ‏ Instrumentation Concepts Ground-based Optical Telescopes Keith Taylor (IAG/USP) Aug-Nov, 2008 Aug-Sep, 2008 IAG-USP.
1 On-sky validation of LIFT on GeMS C. Plantet 1, S. Meimon 1, J.-M. Conan 1, B. Neichel 2, T. Fusco 1 1: ONERA, the French Aerospace Lab, Chatillon, France.
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
MCAO Adaptive Optics Module Subsystem Optical Designs R.A.Buchroeder.
Center for Astronomical Adaptive Optics Ground layer wavefront reconstruction using dynamically refocused Rayleigh laser beacons C. Baranec, M. Lloyd-Hart,
B.Delabre November 2003ANGRA DOS REIS - BRAZIL ESO 2 nd GENERATION INSTRUMENTATION – OPTICAL DESIGNS ESO VLT SECOND GENERATION INSTRUMENTATION Optical.
Laboratory prototype for the demonstration of sodium laser guide star wavefront sensing on the E-ELT Sexten Primary School July 2015 THE OUTCOME.
GLAO simulations at ESO European Southern Observatory
Telescopes & recent observational techniques ASTR 3010 Lecture 4 Chapters 3 & 6.
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
Adaptive Optics1 John O’Byrne School of Physics University of Sydney.
“Twinkle, Twinkle Little Star”: An Introduction to Adaptive Optics Mt. Hamilton Visitor’s Night July 28, 2001.
AO for ELT – Paris, June 2009 MAORY Multi conjugate Adaptive Optics RelaY for the E-ELT Emiliano Diolaiti (INAF–Osservatorio Astronomico di Bologna)
The AO system for the GTC -an update Nicholas Devaney, Dolores Bello, Bruno Femenía, Alejandro Villegas, Javier Castro Grantecan, Instituto de Astrofísica.
Viewing the Universe through distorted lenses: Adaptive optics in astronomy Steven Beckwith Space Telescope Science Institute & JHU.
Tomographic reconstruction of stellar wavefronts from multiple laser guide stars C. Baranec, M. Lloyd-Hart, N. M. Milton T. Stalcup, M. Snyder, & R. Angel.
AO review meeting, Florence, November FLAO operating Modes Presented by: S. Esposito Osservatorio Astrofisico di Arcetri / INAF.
OC, June 3, SAM – SOAR Adaptive Module Andrei Tokovinin Nicole van der Bliek.
Future Plan of Subaru Adaptive Optics
SAM PDR1 S OAR Adaptive Module LGS LGSsystem Andrei Tokovinin SAM LGS Preliminary Design Review September 2007, La Serena.
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
Ground Layer AO at ESO’s VLT Claire Max Interim Director UC Observatories September 14, 2014.
Vancouver, June Models of the ground layer and free atmosphere at some sites A. Tokovinin, CTIO Need for OTP “models”: Adaptive Optics!
SITE PARAMETERS RELEVANT FOR HIGH RESOLUTION IMAGING Marc Sarazin European Southern Observatory.
NEWFIRM: the NOAO Extremely Wide Field IR Imager Presented by Ron Probst, Project Scientist.
Experimental results of tomographic reconstruction on ONERA laboratory WFAO bench A. Costille*, C. Petit*, J.-M. Conan*, T. Fusco*, C. Kulcsár**, H.-F.
Gemini AO Program SPIE Opto-Southwest September 17, 2001 Ellerbroek/Rigaut [SW01-114] AO … for ELT’s 1 Adaptive Optics Requirements, Concepts, and Performance.
March 31, 2000SPIE CONFERENCE 4007, MUNICH1 Principles, Performance and Limitations of Multi-conjugate Adaptive Optics F.Rigaut 1, B.Ellerbroek 1 and R.Flicker.
Na Laser Guide Stars for CELT CfAO Workshop on Laser Guide Stars 99/12/07 Rich Dekany.
Page 1 Adaptive Optics in the VLT and ELT era Wavefront sensors, correctors François Wildi Observatoire de Genève.
Some Thoughts on Ground Layer Adaptive Optics & Adaptive Secondary Mirrors for Keck P. Wizinowich 9/15/14 1.
1 Comparative Performance of a 30m Groundbased GSMT and a 6.5m (and 4m) NGST NAS Committee of Astronomy & Astrophysics 9 th April 2001 Matt Mountain Gemini.
Science with Giant Telescopes - Jun 15-18, Instrument Concepts InstrumentFunction range (microns) ResolutionFOV GMACSOptical Multi-Object Spectrometer.
Overview Science drivers AO Infrastructure at WHT GLAS technicalities Current status of development GLAS: Ground-layer Laser Adaptive optics System.
Turbulence profiler MASS: First tests and plans A. Tokovinin CTIO edu/edu/~atokovin/profiler.
Robo-AO Overview: System, capabilities, performance Christoph Baranec (PI)
GMT’s Near IR Multiple Object Spectrograph - NIRMOS Daniel Fabricant Center for Astrophysics.
Page 1 Lectures 11 Lasers used for Guide Stars Wavefront Errors from Laser Guide Stars Projects: Discuss Performance Reqirements Claire Max Astro 289,
François Rigaut, Gemini Observatory GSMT SWG Meeting, LAX, 2003/03/06 François Rigaut, Gemini Observatory GSMT SWG Meeting, LAX, 2003/03/06 GSMT AO Simulations.
Gemini AO Program March 31, 2000Ellerbroek/Rigaut [ ]1 Scaling Multi-Conjugate Adaptive Optics Performance Estimates to Extremely Large Telescopes.
Lecture 14 AO System Optimization
Adaptive optics Now: Soon: High angular resolution
MASS-DIMM – a turbulence monitor for Adaptive Optics
Comparative Performance of a 30m Groundbased GSMT and a 6
NGS AO Control Light from Telescope Telescope pointing offload
“Twinkle, Twinkle Little Star”: An Introduction to Adaptive Optics
Presentation transcript:

A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas

Outline of the talk… Case for visible-light AO at SOAR Performance estimates System concept

SOAR telescope Built and operated by a consortium Located at Cerro Pachon, Chile Optimized for high angular resolution First light: April 2003

Drivers for visible-light AO SOAR should complement 8-m Gemini (IR- optimized) and 4-m Blanco (wide field): high angular resolution in the visible is required!  Lack of bright guide stars for AO  Small isoplanatic field and cone effect  Competition with Hubble Space Telescope  Competition with Gemini, VLT in the IR Problems:

Concept for SOAR AO High-resolution mode: NGS up to 12 mag., small field, diffraction-limited resolution, 3-D spectroscopy Low-resolution mode: ground layer compensation (improved seeing) with Rayleigh LGS, 3 arcmin. field, 100% sky coverage

Ground layer compensation Rayleigh LGS is better than sodium LGS for ground- layer turbulence sensing

Science case

Resolution: 0.3” and 0.7”

Performance 1. Seeing at Pachon Median seeing: 0.67” (r0=15cm at 500nm) Good seeing: 0.50” (r0=20cm) Outer scale 25m Average profile (65% near the ground) >25000 profiles at CTIO with MASS A good night: June 20, 2002

Performance 2. High resolution Good seeing, 660 nm, R=12 NGS Good seeing, 660 nm

Performance 3. Low-resolution Stacked PSFs (good seeing, 660 nm) Tip-tilt AO with LGS

Performance 4. Summary FWHM vs. wavelength: median and good seeing More gain for favorable turbulence profiles!

AO instrument concept Compensation order 10 (40-cm sub-aperture size) Dedicated science instruments (not adaptive secondary) Small Deformable Mirror (DM) Shack-Hartmann WFS Compact refractive optics UV laser

Dedicated science instruments InstrumentFormatPixel size, arcsec Field, arcsec CCD, High resol. 2048x x30 CCD, Low resol. 2048x x158 IFU spectrograph 50x and x0.39 and 5x2.6

Deformable mirror Small electrostatic (OkoTech) 35 mm pupil 70 actuators Enough stroke for 1” seeing Biased, R=25 m DM-37 studied

Wave-front sensor Shack-Hartmann type 10x10 format (8 pixels per sub-aperture) CCD-39 from E2V corp. most likely No offsets resp. to science instruments 4 TTS for LGS (APD-based)

Optical design Refractive design (cheap, compact) Field lens, collimator, DM, camera Two cameras: low and high resolution Low Res.: FWHM <0.1” over 3 arcmin. High Res.: diffraction-limited Wavelength range micron Transmission at 355 nm 0.74

Spot diagrams (LR mode)

Layout

Laser Guide Star Solid-state Nd:YAG laser, 355 nm Power from 1 to 8 W Focused at 10 km, range gate 1 km Flux photons per sub-aperture per millisecond Small launch telescope behind the SOAR secondary No danger to airplanes and satellites Tip-tilt on 2-4 stars to mag, 100% sky coverage

Conclusions Astronomy-driven AO for SOAR Cheap AO system Visible-light AO Improved seeing with Rayleigh LGS: test-bed for larger telescopes