Susanna Stephens H 2 O  AgF characterised by Rotational Spectroscopy.

Slides:



Advertisements
Similar presentations
H 2 CuF An overview of H 2 MX complexes G.S. Grubbs II, D.J. Frohman, Z. Yu, S.E. Novick TH13, Columbus 2013 Inorg. Chem. 52, (2013).
Advertisements

FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL ACETYLIDES P. M. SHERIDAN, M. K. L. BINNS Department of Chemistry and Biochemistry, Canisius College.
HYDROGEN INTERACTION WITH METAL HALIDES: THE NUCLEAR QUADRUPOLE COUPLING CONSTANT OF GOLD IN THE p-H 2 -AuCl COMPLEX AND TRENDS IN THE OTHER HYDROGEN-COINAGE.
Broadband Rotational Spectrum and Molecular Geometry of OC  AgI Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium.
THE MICROWAVE SPECTRA OF THE LINEAR OC HCCCN, OC DCCCN, AND THE T-SHAPED HCCCN CO 2 COMPLEXES The 62 nd. International Symposium on Molecular Spectroscopy,
Measurement of the Vibrational Population Distribution of Barium Sulfide, Seeded in an Argon Supersonic Expansion, Following Production Through the Reaction.
CP-FTMW Spectroscopy of Metal-containing Complexes Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon Max-Planck Advanced Study Group at the Center.
Supersonic Jet Spectroscopy on TiO 2 Millimeter-wave Spectroscopy of Titanium Monoxide and Titanium Dioxide 63 rd International Symposium on Molecular.
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.
Nicholas R. Walker, Susanna L. Stephens, David P. Tew and Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University,
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
HYPERFINE SPLITTING AND ROTATIONAL ANALYSIS OF THE DIATOMIC MOLECULE ZINC MONOSULFIDE, ZnS DANIEL J. FROHMAN, G. S. GRUBBS II AND STEWART E. NOVICK O.S.U.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
Daniel P. Zaleski, Susanna L. Stephens, Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. Evidence.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
Physique des Lasers, Atomes et Molécules
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Electronic Transition of Ruthenium Monoxide Na Wang, Y. W. Ng and A. S.-C. Cheung Department of Chemistry The University of Hong Kong.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Internal Rotation in CF 3 I  NH 3 and CF 3 I  N(CH 3 ) 3 Probed by CP-FTMW Spectroscopy Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 66.
A LABORATORY AND THEORETICAL INVESTIGATION OF THE SILICON SULFUR MOLECULES H 2 SiS AND Si 2 S. MICHAEL C. MCCARTHY 1, PATRICK THADDEUS 1, HARSHAL GUPTA.
E. Gonzalez, C.M.L. Rittby, and W.R.M. Graham
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Microwave Spectra and Structure of CF 3 I···PH 3 by chirped-pulse spectroscopy in context of the CF 3 I···B and ClI···B series Susanna L. Stephens, Nick.
Structures and Internal Dynamics of H 2 S  ICF 3 and H 2 O  ICF 3 Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium.
Daniel P. Zaleski and Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. David P. Tew and Anthony.
June 25, th International Symposium on Molecular Spectroscopy Hyperfine Resolved Pure Rotational Spectroscopy of ScN, YN, and BaNH (X 1  + ):
The Search for an Observable Helium Complex Adrian M. Gardner, Timothy G. Wright and Corey J. Evans.
Susanna L. Stephens, John Mullaney, Matt Sprawling Daniel P. Zaleski, Nick R. Walker, Antony C. Legon 69 th International Symposium on Molecular Spectroscopy,
Development of a cavity ringdown spectrometer for measuring electronic states of Be clusters JACOB STEWART, MICHAEL SULLIVAN, MICHAEL HEAVEN DEPARTMENT.
N 2 -CO 2 Consequences for Global Warming? Daniel Frohman Wesleyan University TH01 June 22, 2010.
S TRUCTURE D ETERMINATION AND CH···F I NTERACTIONS IN H 2 C=CHF···H 2 C=CF 2 B Y F OURIER - T RANSFORM M ICROWAVE S PECTROSCOPY Rachel E. Dorris, Rebecca.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
THE J = 1 – 0 ROTATIONAL TRANSITIONS OF 12 CH +, 13 CH +, AND CD + T. Amano Department of Chemistry and Department of Physics and Astronomy The University.
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
Pure Rotational Spectra of the Rare Isotopologues of TiO (X 3 Δ r ) Andrew P. Lincowski, DeWayne T. Halfen, and Lucy M. Ziurys Department of Chemistry.
Nicholas R. Walker, David Hird, Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University, Broadband Rotational.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 S-AgCl Nicholas R. Walker, David Wheatley, Anthony C. Legon 64 th OSU International Symposium on.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
Rotational Spectroscopy of OCS in Superfluid Helium Nanodroplets Paul Raston, Rudolf Lehnig, and Wolfgang Jäger Department of Chemistry, University of.
The Rotational Spectroscopy of SrS Kerry C. Etchison, Chris T. Dewberry and Stephen A. Cooke Department of Chemistry, University of North Texas P.O. Box.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
pgopher in the Classroom and the Laboratory chm. bris
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Juliane Heitkämper, John C Mullaney, Nick Walker
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
Microwave Spectra and Structures of H4C2CuCl and H4C2AgCl
1Kanagawa Institute of Technology 3Georgia Southern University
Daniel Zaleski,a John Mullaney,a Nicholas Walkera and Anthony Legonb
Becca Mackenzie Chris Dewberry, Ken Leopold
Microwave spectra of Ar...AgI and H2O...AgI produced by laser ablation
THE STRUCTURE OF PHENYLGLYCINOL
The rotational spectrum of the urea isocyanic acid complex
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
John Mullaney Newcastle University
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

Susanna Stephens H 2 O  AgF characterised by Rotational Spectroscopy

Objectives Systematic investigation B∙∙∙MX species where B is a Lewis base, M a coinage metal and X a halogen. Compare H 2 O ∙∙∙AgF and H 2 O ∙∙∙HF with H 2 O ∙∙∙AgCl and H 2 O ∙∙∙HCl Trends with previous work OC-MX and Ar-MX studies by Gerry and co-workers. H2S ∙∙∙MX and H 2 O ∙∙∙MX by Walker, Legon and co-workers

Balle-Flygare spectrometer To vacuum Stationary Mirror Adjustable mirror Fabry-Perot cavity containing standing wave and expansion of supersonic jet Adiabatic expansion of SF 6 / H 2 O / Ar Solenoid valve Gas line Silver rod and rotator 532 nm Nd:YAG laser Focusing lens To microwave circuits Rod rotator Laser arm Gas line attached to solenoid valve Microwave emission antenna Laser ablation nozzle A.C. Legon, in: G. Scoles (Ed.), Atomic and Molecular Beam Methods, vol. 2, Oxford University Press, Oxford, 1992 (Chapter 9) S. G. Batten, A. G. Ward, A. C. Legon, J. Mol. Struct., 300, 780, (2006)

Predicted structure First observed with H2O ··· HF Z. Kisiel, A.C. Legon, D.J. Millen, Proc. R. Soc. Lond. A 381, 419, (1982)  AgFO r AgO r AgF a

Analogous system H 2 O···AgCl and H 2 S···AgCl H 2 O···CuCl and H 2 S···CuCl studied subsequently are analogous H 2 O···AgCl and H 2 S···AgCl S. J. Harris et al., Ang.Chem.Int.Ed., 49, 181 (2010) H 2 O···AgCl and H 2 O···CuCl V. A. Mikhailov et al., J. Chem. Phys., 134, (2011) H 2 S···CuCl and H 2 S···CuCl N. R. Walker et al., J. Chem. Phys., Accepted

Molecular transitions CCSD(T) structure prediction Comparison B···MX 300 MHz search range H 2 16 O  109 AgF H 2 16 O  107 AgF H 2 16 O  109 AgF H 2 16 O  107 AgF J’’-J’ = 1 01 ←2 02 J’’-J’ = 1 11 ←2 12 J’’-J’ = 1 01 ←2 02 J’’-J’ = 2 02 ←3 03 J’’-J’ = 1 11 ←2 12, 1 11 ←2 10, 2 12 ←3 13, 2 12 ←3 11

H 2 16 O  107 AgF H 2 16 O  109 AgF H 2 18 O  107 AgFH 2 18 O  109 AgF B 0 + C 0 /MHz (15) (26) * * B 0 - C 0 /MHz (10) (17)  J / kHz 1.266(44)1.241(75)  JK / kHz 74.31(43)74.70(73) N6644  r.m.s /kHz D 2 16 O  107 AgFD 2 16 O  109 AgFHD 16 O  107 AgFHD 16 O  109 AgF B 0 + C 0 / MHz * * * *  J / kHz N2222  r.m.s /kHz---- *Statistical uncertainties cannot be determined where four parameters are derived from 4 measurements or two parameters derived from two measurements Spectral Constants Spectral fitting carried out in PGOPHER

Barrier to inversion

ab initio CCSD(T)/VQZ r e Experimental r 0 Ag-F (11) Ag-O (11) ϕ (1) σ r.m.s As A 0 is not determined and the hydrogens lye off the a-axis geometry of the water subunit assumed to be equal to that of free water Geometry

ϕ /ϕ / k  /N m -1 H 2 O···F 2 49(2)3.63(7) H 2 O···Cl 2 43 (3)8.0(1) H 2 O···HF H 2 O···HCl34.7(4)12.9 H 2 O···ClF59(2)14.16(4) Bonding in H 2 O···YX complexes Where Y is a coinage metal or a halogen r H2O-Y /År Y-X /Å For Free MX ϕ /ϕ / k  /N m -1 H 2 16 O··· 107 AgF2.168(15)1.985(11) (1)57(2) H 2 16 O··· 107 Ag 35 Cl2.198(10)2.273(6) (2)37 H 2 16 O··· 63 Cu 35 Cl1.91 (10)2.062(6) (1)58(2) H 2 O ··· ClF H2O ·· F2 S.Cooke et al. J. Chem. Eur., 11, 7 (2001) H 2 O ··· Cl2 J.B.Davey et al., J. Chem. Phys. 114, 6190 (2001) H 2 O ··· HCl Z. Kisiel et al., J. Chem. Phys., 104, 6970 (2000) H 2 O ··· HF Z. Kisiel, A.C. Legon, D.J. Millen, Proc. R. Soc. Lond. A 381, 419, (1982) AgFOkabayashi et al., J. Mol. Spectr., 209, 66 (2001) H 2 O···AgCl and H 2 O···CuCl V. A. Mikhailov et al., J. Chem. Phys., 134, (2011)

Acknowledgements University of Bristol Nick Walker Tony C. Legon David Tew Colin M. Western For development and adaption of PGOPHER for rotational spectroscopy

FCl ϕ /ϕ / k  /N m -1 ϕ /ϕ / H 2 O···HX (4)12.9 H 2 O···AgX42(1)57(2)37(2)37

Frequency MHz H 2 18 O  107 AgFH 2 18 O  109 AgFD 2 16 O  107 AgFD 2 16 O  109 AgF → → b b → → a → a b → b Frequency MHz H 2 16 O  107 AgF H 2 16 O  109 AgF HD 16 O  107 AgFHD 16 O  109 AgF → b → b b → a → b → b b → b a Measurement with isotopically enriched 107 Ag rod b Measurement with natural abundance silver rod. Also observed with isotopically enriched. Less intense signal due to inconsistent 107Ag layer over glass rod at later times of experiment H 2 O ··· AgF molecular transitions

ExperimentalM-LM-X r ML (Cl) /r ML (F) OCAgCl OCAgF ArAgCl ArAgF KrAgCl KrAgF XeAgCl XeAgF H2O-AgCl A 0 GHzB 0 GHzC 0 GHz Search MHz Theoretical H2O-AgF (11)1.985(11)Exp: Ratio of AgCl:AgF bond lengths This has a fairly small range across all ligands Find Ag-F distance across this range Structure prediction by comparison

If I 1 and I 2 are the nuclear spin vectors of the H 2 O protons, the Pauli exclusion principle requires that, of the allowed spin states, I 1 + I 2 = 0 must occur in combination with K -1 = 0 rotational levels while the state | I 1 + I 2 |= 1 must occur in combination with k -1 = 1 rotational levels. Hence, no spin-spin interactions involving H 2 O protons can contribute to the extra structure observed in the 2 02 – 1 01 and 3 03 – 2 02 transitions. Or I = 1 state cannot be combined with a wavefunction with K -1 =0 but can with K -1 =1 state. I = 0 can only appear in a K -1 =0 state.