Presentation is loading. Please wait.

Presentation is loading. Please wait.

Daniel Zaleski,a John Mullaney,a Nicholas Walkera and Anthony Legonb

Similar presentations


Presentation on theme: "Daniel Zaleski,a John Mullaney,a Nicholas Walkera and Anthony Legonb"— Presentation transcript:

1 Daniel Zaleski,a John Mullaney,a Nicholas Walkera and Anthony Legonb
Formation of Complexes CyclopropaneMCl (M = Ag or Cu) and their Characterization by Broadband Rotational Spectroscopy 70th International Symposium on Molecular Spectroscopy, University of Illinois, Champaign-Urbana, June 2015 Daniel Zaleski,a John Mullaney,a Nicholas Walkera and Anthony Legonb aSchool of Chemistry, University of Newcastle bSchool of Chemistry, University of Bristol

2 Background: Involvement of π electrons in hydrogen-bond interactions
→ Rules for angular geometry in hydrogen-bonded complexes π-electrons in ethyne Hydrogen bond to  electrons π-electrons in ethene Hydrogen bond to  electrons A. C. Legon, P. D. Aldrich and W. H. Flygare, J. Chem. Phys., 75, , (1981). P. D. Aldrich, A. C. Legon and W. H. Flygare, J. Chem. Phys., 75, , (1981)

3 Background: Involvement of π electrons in halogen-bond interactions
→ Rules for angular geometry in halogen-bonded complexes π-electrons in ethene Halogen bond to  electrons Halogen bond to  electrons π-electrons in ethyne H.I. Bloemink, J.H. Holloway and A.C. Legon, Chem. Phys. Letters, 250, , (1996). K. Hinds, J.H. Holloway and A.C. Legon, J. Chem. Soc. Faraday Trans., 92, , (1996).

4 More recent background: Systematic investigations of complexes of
Lewis bases with CuX and AgX S. L. Stephens, D. M. Bittner, V. A. Mikhailov, W. Mizukami, D. P. Tew, N. R. Walker and A. C. Legon, Inorg. Chem., 53, , (2014). S. L. Stephens, D. P. Tew, V. A. Mikhailov, N. R. Walker and A. C. Legon, J. Chem. Phys., 135, , (2011). CuCl and AgCl also undergo non-covalent interactions with π system of ethene, but note distortion of ethene. Angular geometries of C2H4HCl, C2H4ClF and C2H4Cu Cl and C2H4AgCl are isomorphic

5 More recent background: Systematic investigations of complexes of Lewis bases with CuCl and AgCl
S. L. Stephens, D. M. Bittner, V. A. Mikhailov, W. Mizukami, D. P. Tew, N. R. Walker and A. C. Legon, Inorg. Chem., 53, , (2014). S. L. Stephens, W Mizukami, D. P. Tew, N. R. Walker and A. C. Legon, J. Chem. Phys., 137, , (2012). Non-covalent interactions with CuCl and AgCl are strong enough to lengthen C≡C by ≈0.02 Å and increase HCC angle by several degrees. Angular geometries of C2H2HCl, C2H2ClF and C2H2Cu Cl and C2H2AgCl are isomorphic

6 → Pseudo-π character of cyclopropane
Coulson-Moffitt model of cyclopropane sp3 hybridization of C, overlap of lobes on adjacent C atoms ‘bent’ bond of a pseudo-π type. Pseudo- complexes of cyclopropane with CuCl or AgCl?

7 How to synthesize molecules BMCl inside
a Pate-type broadband FTMW spectrometer

8 Broadband rotational spectrum of cyclopropane with CuCl
Upward pointing: Observed Down pointing: Simulated (PGOPHER) Blue: c-C3H6 -63 Cu-35Cl Red: c-C3H6-65Cu-35Cl Note: ‘fuzz’ is nuclear quadrupole hfs arising from two quadrupolar nuclei (63,65Cu,35Cl)

9 Broadband rotational spectrum of cyclopropane with AgCl
Upward pointing: Observed Down pointing: Simulated (PGOPHER) Blue: c-C3H6- 107Ag-35Cl Red: c-C3H6 -109Ag-35Cl Note: less ‘fuzz’ because only one quadrupolar nucleus (35Cl)

10 Ground-state spectroscopic constants of naturally abundant isotopologues
A0/MHz B0/MHz C0/MHz ΔJ/kHz ΔJK/kHz χaa(Cl)/MHz χaa(Cu)/MHz c-C3H6-63Cu-35Cl 18059(17) (43) (42) 0.1329(51) 2.40(17) (69) 57.307(85) c-C3H6-65Cu-35Cl 18058(19) (40) (52) [0.1329] [2.40] -24.50(16) 52.97(22) c-C3H6-107Ag-35Cl (10) (39) (41) 0.0991(23) 3.665(92) -31.26(26) c-C3H6-109Ag-35Cl (38) (32) (30) [0.0991] [3.665] -31.18(26) Pa/(u Å2) Pb/(u Å2) Pc/(u Å2) (13) 22.884(13) 5.101(13) (15) 22.885(15) 5.101(15) (15) (15) (15) (12) (12) 5.1879(12) N σRMS/kHz 91 10.8 32 10.7 34 10.3 33 9.4

11 Isotopologues investigated
c-C2H4CD2-63,65Cu-35Cl (CD2 off a-axis) c-C3H6-63,65Cu-35Cl c-CD2C2H4-63,65Cu-35Cl ( CD2 on a-axis) c-C2H4CD2-63Cu-37Cl (CD2 off a-axis) c-C3H6-63Cu-37Cl (8 isotopologues) cyclopropaneCuCl c-C3H6-107,109Ag-35Cl c-C3H6-107,109Ag-37Cl c-CD2C2H4-107,109Ag-35Cl ( CD2 on a-axis) c-C2H4CD2-107,109Ag-35Cl (CD2 off a-axis) (8 isotopologues) cyclopropaneAgCl A0 independent of Cu or Cl isotope A0 independent of Ag or Cl isotope

12 Planar moments are revealing!
Mean Pc for H containing isotopologues: c-C3H6-AgCl = (10) u Å2 c-C3H6-CuCl = 5.101(15) u Å2 c-C3H = (6) u Å2 Mean Pb for H containing isotopologues: c-C3H6-AgCl = (5) u Å2 c-C3H6-CuCl = (15) u Å2 c-C3H = (6) u Å2 Substantial increases in bC and bH and in r (C-C)Front

13 * Geometry of cyclopropaneAgCl rside(C−C) = 1.486(8) Å (1.5016 Å)
57.7(2)⁰ * rfront(C−C) = (17) Å ( Å) Numbers in black: r0 geometry fitted with STRFIT (Z. Kisiel). (in brown: CCSD(T)/cc-pVTZ) r(*Ag) = (53) Å ( Å) r(Ag−Cl) = (47) Å ( Å)

14 Do pseudo-π bonds also be acceptors for hydrogen/halogen bonds?
A. C. Legon, P. D. Aldrich and W. H. Flygare, J. Amer. Chem. Soc., 104, , (1982). K. Hinds, J.H. Holloway and A.C. Legon, J. Chem. Soc. Faraday Trans., 93, , (1997). CyclopropaneMCl: non-covalent bond to pseudo-π electrons CyclopropaneHCl: Hydrogen bond to pseudo-π electrons CyclopropaneClF: Halogen bond to pseudo-π electrons

15 Distortions δr0(CC) of π- and pseudo-π bonds on non-covalent interaction with CuCl (relative to free Lewis base) δr(C≡C) = (25)Å δr(C=C) = (44) Å δrfront (C−C) = (9)Å δrside (C−C) = (4)Å

16 with AgCl (relative to free Lewis base)
Distortions δr0 (CC) of π- and pseudo-π bonds on non-covalent interaction with AgCl (relative to free Lewis base) δr(C≡C) = (22) Å δr(C=C) = (18) Å δrfront (C−C) = (17)Å δrside (C−C) = (8)Å

17 Why does cyclopropane suffer greater distortion than ethyne or ethene?
Are the cyclopropaneMCl complexes more strongly bound? BMCl Dissociation energy,* De/kJ mol-1 CC bond distortion δr0(CC)/Å C2H2CuCl 148 0.0268(25) C2H4CuCl 155 0.0284(44) c-C3H6CuCl 105 0.1027(9) C2H2AgCl 98 0.0165(22) C2H4AgCl 94 0.0132(18) c-C3H6AgCl 66 0.0733(17) * Ab initio, CCSD(T)/cc-pVTZ (or better), bsse corrected

18 Why are the CC bond distortions larger in cyclopropane?
Ethyne Ethene Cyclopropane Two  + one σ CC bond One  + one σ CC bond Only a pseudo- CC (single) bond

19 Conclusions Pseudo-π bond of cyclopropane undergoes non-covalent interaction with hydrogen-bond donors, halogen-bond donors and ‘metal’-bond donors. Geometries of hydrogen-bonded, halogen-bonded and ‘metal’-bonded complexes with cyclopropane are isomorphic. Also for ethyne and ethene series. EthyneMCl, etheneMCl and cyclopropaneMCl all show CC bond lengthening on complex formation, but much larger for cyclopropane as Lewis base.

20 Geometry of cyclopropaneCuCl
rside(C−C) = 1.468(4) Å ( Å) 56.5(1)⁰ * rfront(C−C) = (9) Å ( Å) Numbers in black: r0 geometry fitted with STRFIT (Z. Kisiel). in brown: CCSD(T)/ccpVTZ) r(*Cu) = (46) Å ( Å) r(Cu−Cl) = (41) Å ( Å)


Download ppt "Daniel Zaleski,a John Mullaney,a Nicholas Walkera and Anthony Legonb"

Similar presentations


Ads by Google