1 Genetics 24231 Faculty of Agriculture Instructor: Dr. Jihad Abdallah Topic 13:Recombinant DNA Technology.

Slides:



Advertisements
Similar presentations
Chapter 20 DNA Technology & Genomics. Slide 2 of 14 Biotechnology Terms Biotechnology Process of manipulating organisms or their components to make useful.
Advertisements

Manipulating DNA: tools and techniques
DNA Technology & Gene Mapping Biotechnology has led to many advances in science and medicine including the creation of DNA clones via recombinant clones,
Biotechnology Chapter 11.
Recombinant DNA technology
 Intent of altering human genome  Introducing new genetic material into genome  Insulin.
Recombinant DNA Introduction to Recombinant DNA technology
Lecture ONE: Foundation Course Genetics Tools of Human Molecular Genetics I.
Gene Cloning Techniques for gene cloning enable scientists to prepare multiple identical copies of gene-sized pieces of DNA. Most methods for cloning pieces.
7.1 Techniques for Producing and Analyzing DNA SBI4UP MRS. FRANKLIN.
Concept 20.1: DNA cloning yields multiple copies of a gene or other DNA segment To work directly with specific genes, scientists prepare well-defined segments.
GENETIC ENGINEERING (RECOMBINANT DNA TECHNOLOGY)
Genetic Engineering Do you want a footer?.
Objective 2: TSWBAT describe the basic process of genetic engineering and the applications of it.
Gene Technology Chapters 11 & 13. Gene Expression 0 Genome 0 Our complete genetic information 0 Gene expression 0 Turning parts of a chromosome “on” and.
CHAPTER 20 BIOTECHNOLOGY: PART I. BIOTECHNOLOGY Biotechnology – the manipulation of organisms or their components to make useful products Biotechnology.
Chapter 20~DNA Technology & Genomics. Who am I? Recombinant DNA n Def: DNA in which genes from 2 different sources are linked n Genetic engineering:
Gene Technology Chapter 16.
Chapter 19 – Molecular Genetic Analysis and Biotechnology
Trends in Biotechnology
-The methods section of the course covers chapters 21 and 22, not chapters 20 and 21 -Paper discussion on Tuesday - assignment due at the start of class.
1 Genetics Faculty of Agriculture and Veterinary Medicine Instructor: Dr. Jihad Abdallah Topic 15:Recombinant DNA Technology.
Biotechnology Packet #12 Chapter #9. Introduction Since the 1970’s, humans have been attempted to manipulate and modify genes in a way that was somewhat.
Technological Solutions. In 1977 Sanger et al. were able to work out the complete nucleotide sequence in a virus – (Phage 0X174) This breakthrough allowed.
Biotechnology Methods Producing Recombinant DNAProducing Recombinant DNA Locating Specific GenesLocating Specific Genes Studying DNA SequencesStudying.
Recombinant Technololgy
Genetic Engineering. What is genetic engineering? Application of molecular genetics for practical purposes Used to – identify genes for specific traits.
DNA Technology. 1.Isolation – of the DNA containing the required gene 2.Insertion – of the DNA into a vector 3.Transformation – Transfer of DNA into a.
NIS - BIOLOGY Lecture 57 – Lecture 58 DNA Technology Ozgur Unal 1.
DNA Technology. Overview DNA technology makes it possible to clone genes for basic research and commercial applications DNA technology is a powerful set.
Biotechnology.
Genetics 6: Techniques for Producing and Analyzing DNA.
19.1 Techniques of Molecular Genetics Have Revolutionized Biology
DNA TECHNOLOGY AND GENOMICS CHAPTER 20 P
Biotechnology Chapter 17.
PHARMACOBIOTECHNOLOGY.  Recombinant DNA (rDNA) is constructed outside the living cell using enzymes called “restriction enzymes” to cut DNA at specific.
GENETIC ENGINEERING CHAPTER 20
Concept 20.1: DNA cloning yields multiple copies of a gene or other DNA segment To work directly with specific genes, scientists prepare well-defined segments.
Chapter 10: Genetic Engineering- A Revolution in Molecular Biology.
Genetic Engineering Genetic engineering is also referred to as recombinant DNA technology – new combinations of genetic material are produced by artificially.
Chapter 20: DNA Technology and Genomics - Lots of different techniques - Many used in combination with each other - Uses information from every chapter.
BIOTECHNOLOGY DNA is now being easily manipulated. Molecular biologists analyze and alter genes and their respective proteins. Recombinant DNA is DNA from.
Molecular Genetic Technologies Gel Electrophoresis PCR Restriction & ligation Enzymes Recombinant plasmids and transformation DNA microarrays DNA profiling.
Recombinant DNA Technology. DNA replication refers to the scientific process in which a specific sequence of DNA is replicated in vitro, to produce multiple.
Genetic Engineering/ Recombinant DNA Technology
DNA Technology Ch. 20. The Human Genome The human genome has over 3 billion base pairs 97% does not code for proteins Called “Junk DNA” or “Noncoding.
Chapter 20 DNA Technology and Genomics. Biotechnology is the manipulation of organisms or their components to make useful products. Recombinant DNA is.
15 March 2016 Today’s Title: CW: Introduction to genetic engineering Learning Question: what is genetic engineering?
Chapter 14 GENETIC TECHNOLOGY. A. Manipulation and Modification of DNA 1. Restriction Enzymes Recognize specific sequences of DNA (usually palindromes)
Green with envy?? Jelly fish “GFP” Transformed vertebrates.
KEY CONCEPT DNA sequences of organisms can be changed.
Recombinant DNA & gene cloning Biology Donald Winslow 5 October 2010.
Viral and Bacterial Genomes & DNA Technology. Viruses Tiny; much smaller than a bacteria Basic structure: – Nucleic acid (DNA or RNA) enclosed in a protein.
Genetics: Analysis and Principles Robert J. Brooker CHAPTER 18 RECOMBINANT DNA TECHNOLOGY.
Biotechnology.
Gene Cloning Techniques for gene cloning enable scientists to prepare multiple identical copies of gene-sized pieces of DNA. Most methods for cloning pieces.
Figure 20.0 DNA sequencers DNA Technology.
Bacterial Transformation
Chapter 20: DNA Technology and Genomics
DNA Tools & Biotechnology
DNA Technology Now it gets real…..
Chapter 20 – DNA Technology and Genomics
Chapter 20 Biotechnology.
Chapter 14 Bioinformatics—the study of a genome
Recombinant DNA Technology
DNA Tools & Biotechnology
Recombinant DNA Technology
DNA Technology and Genomics
Chapter 20: DNA Technology and Genomics
Presentation transcript:

1 Genetics Faculty of Agriculture Instructor: Dr. Jihad Abdallah Topic 13:Recombinant DNA Technology

2 Recombinant DNA Technology Recombinant DNA Technology is the use of laboratory molecular techniques to isolate and manipulate fragments of DNA (recombinant DNA molecules). The first successes in making recombinant DNA molecules were made in the early 1970s by two research groups at Stanford University.

3 Uses and Applications of recombinant DNA Technology 1.Improve our understanding of gene structure and function. 2.Gene therapy 3.Production of Transgenic plants and animals in agriculture: the cloned gene from one species is transferred to other species.

4 How Do Researchers Make Multiple Copies of Recombinant DNA? 1. Cloning 2. PCR 3. Making cDNA from mRNA by reverse transcriptase.

5 Gene Cloning Refers to the phenomenon of isolating and making many copies of a gene. Involves the introduction of a single recombinantDNA (gene and plasmid) molecule into a bacterial host cell. A gene is removed from its native site within a chromosome and inserted into a smaller segment of DNA called “vector”. The purpose of the vector is to act as the carrier of the gene to be cloned. When the vector is introduced into a living cell (called host cell) it can replicate itself in the cell and produce many identical copies of the gene.

6

7 Types of Vectors 1. Plasmids: small circular pieces of DNA. They are found naturally in many strains of bacteria. Many naturally occurring plasmids carry genes that confer resistance to antibiotics and other toxic substances. These plasmids are called R factors. Plasmids also contain a DNA sequence known as the origin of replication that is recognized by the replication enzymes of the host cell. This is the sequence which specifies the host cell specificity (determines the type of bacteria which can host the plasmid)

8 2. Viral vectors: viruses can infect living cells and propagate themselves. Therefore they can be used as vectors to carry genes and replicate them in host cells. Plasmids and viruses can accept inserts only few thousands to tens of thousands of nucleotides in length. 3. Cosmid: is a hybrid between a plasmid and phage λ. Its DNA can replicate in a cell like a plasmid or be packaged into a protein coat like a phage. Can accept DNA inserts that are tens of thousands of bp. 3. YAC (Yeast Artificial Chromosome) and BAC (Bacterial Artificial Chromosome). These vectors can carry much larger segments of DNA than plasmids and viruses (several hundred thousand to 2 million nucleotides in length).

9 Insertion of the chromosomal DNA fragment into the vector requires the cutting and pasting of DNA fragments. To cut DNA, researchers use enzymes known as “Endonucleases” or “restriction enzymes”. They have been called Restriction Enzymes because they restrict viral replication. The restriction enzymes used in cloning experiments bind to a specific base sequence and then cleave the foreign DNA backbone at two defined locations, one on each strand. They are made naturally by many different species of bacteria.

10 Restriction enzymes usually recognize sequences that are plaindromic (the sequence is identical when read in the opposite direction in the complementary strand). Example: the sequence recognized by the enzyme EcoR1 is: 5` -GAATTC- 3` 3` -CTTAAG- 5` Restriction enzymes usually cut DNA into fragments with “sticky ends”. These DNA fragments can hydrogen bond to each other due to their complementary sequences. The fragments are called “restriction fragments” Restriction fragments are pieces of DNA that begin and end with a restriction site.

11

12

13 –PCR (Polymerase Chain Reaction): allows researchers to produce multiple numbers of individual DNA sequences in a very short period of time. In PCR: 1)The selected DNA segment (template) is heated causing the two strands to separate (denaturation step). 2)The DNA is cooled and two short nucleotide sequences termed primers bind to the complementary DNA strands (annealing step) 3)DNA polymerase (called Taq polymerase) then copies each strand until the researcher stops the reaction by again raising the temperature. 4)Increasing the temperature repeats the process.

14 cDNA RNA can be used to clone DNA. cDNA (complementary DNA) can be made from mRNA by the enzyme reverse transcriptase. The enzyme reverse transcriptase can use RNA as a template to make a complementary strand of DNA. The RNA is purified from a sample of cells and mixed with primers Deoxyribonucleotides and reverse transcriptase are then added to make DNA strands that are complementary to the RNA.

15 Detection of genes and gene products Southern blotting: used to detect DNA sequences. Steps: 1.A sample of DNA is digested into small fragments with a restriction enzyme. 2.The fragments are separated by gel electrophoresis and then denatured by soaking in NaOH 3.The DNA bands are then transferred to a nitrocelluolose filter. 4.The filter is placed in a solution containing radiolabled DNA (probe) which causes binding between the probe and the searched DNA fragments. 5.The filter is exposed to X-ray to show the radiolabeld bands.

16

17 Northern blotting: is used to detect RNA, this method can determine if a gene has been transcribed in a certain cell type or not. The technique is similar to southern plotting except that RNA fragments are used instead of DNA. RNAs that are complementary to the radiolabled DNA probes appear as dark bands on the X-ray film.

18 Western blotting is used to detect proteins. The technique is similar to Southern and Western blotting but: 1.A technique called SDS-PAGE (Polyacrylamide gel electrophoresis) is used to separate the proteins on the gel. 2.Instead of using a radiolabled probe, an antibody is used as a probe.