Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by.

Slides:



Advertisements
Similar presentations
Nuclear Magnetic Resonance (NMR) Spectroscopy
Advertisements

Advanced Higher Unit 3 Nuclear Magnetic Resonance Spectroscopy.
Chapter 12 Spectroscopy and Structure Determination
Structure Determination: MS, IR, NMR (A review)
1 CHAPTER 13 Molecular Structure by Nuclear Magnetic Resonance (NMR)
Nuclear Magnetic Resonance (NMR) Spectroscopy
NMR: Theory and Equivalence. Nuclear Magnetic Resonance Powerful analysis – Identity – Purity No authentic needed Analyze nuclei – 1 H, 13 C, 31 P, etc.
Chapter 19 NMR Spectroscopy. Introduction... Nuclear Magnetic Resonance Spectrometry is based on the measurement of absorption of electromagnetic radiation.
Nuclear Magnetic Resonance (NMR) Spectroscopy
Chapter 13 Nuclear Magnetic Resonance Spectroscopy
Understanding 13 C NMR spectroscopy. Nuclear magnetic resonance is concerned with the magnetic properties of certain nuclei. In this course we are concerned.
1 Nuclear Magnetic Resonance Spectroscopy Renee Y. Becker Valencia Community College CHM 2011C.
Nuclear Magnetic Resonance Spectroscopy II Structure Determination:
Analytical Chemistry Option A Part 1: Mass Spectrometry & H-NMR.
Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure Nuclear Magnetic Resonance (NMR)
Physical and Chemical Tests 10-1 Purification: Chromatography Distillation Recrystallization Comparison to known compounds: Melting point Boiling point.
Nuclear Magnetic Resonance (NMR) Spectroscopy Structure Determination
Nuclear Magnetic Resonance Spectroscopy. The Use of NMR Spectroscopy Used to map carbon-hydrogen framework of molecules Most helpful spectroscopic technique.
Nuclear Magnetic Resonance Spectroscopy
KHS ChemistryUnit 3.4 Structural Analysis1 Structural Analysis 3 Adv Higher Unit 3 Topic 4 Gordon Watson Chemistry Department, Kelso High School.
Proton NMR Spectroscopy. The NMR Phenomenon Most nuclei possess an intrinsic angular momentum, P. Any spinning charged particle generates a magnetic field.
Chapter 13 Spectroscopy Infrared spectroscopy Ultraviolet-Visible spectroscopy Nuclear magnetic resonance spectroscopy Mass Spectrometry.
Copyright © 2000 by John Wiley & Sons, Inc. All rights reserved. Introduction to Organic Chemistry 2 ed William H. Brown.
Nuclear Magnetic Resonance
Nuclear Magnetic Resonance Spectroscopy Dr. Sheppard Chemistry 2412L.
NMR Spectroscopy Abu Yousuf, PhD Associate Professor Department of Chemical Engineering & Polymer Science Shahjalal University of Science & Technology.
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy Leroy Wade.
1 Nuclear Magnetic Resonance Spectroscopy 13 C NMR 13 C Spectra are easier to analyze than 1 H spectra because the signals are not split. Each type of.
Chapter 13 Spectroscopy.
Dr. Wolf's CHM 201 & Introduction to 1 H NMR Spectroscopy.
Chapter 3 Nuclear Magnetic Resonance Spectroscopy Many atomic nuclei have the property of nuclear spin. When placed between the poles of a magnet, the.
Nuclear Magnetic Resonance Spectroscopy. 2 Introduction NMR is the most powerful tool available for organic structure determination. It is used to study.
Week 11 © Pearson Education Ltd 2009 This document may have been altered from the original State that NMR spectroscopy involves interaction of materials.
Nuclear Magnetic Resonance
Nuclear Magnetic Resonance Spectroscopy (NMR) Dr AKM Shafiqul Islam School of Bioprocess Engineering.
Unit 11:Data processing and analysis. A.Infrared spectroscopy B.Mass spectrometry C.X-ray diffraction/crystallography D.H NMR.
University of Kurdistan Food Quality Evaluation Methods (FQEM) Lecturer: Kaveh Mollazade, Ph.D. Department of Biosystems Engineering, Faculty of Agriculture,
Nuclear Magnetic Resonance Spectroscopy
Chapter 13 Spectroscopy Infrared spectroscopy Ultraviolet-visible spectroscopy Nuclear magnetic resonance spectroscopy Mass spectrometry Copyright © The.
MC 13.1 Spectroscopy, Pt I 1 Spectrocopy  Nuclear Magnetic Resonance (NMR)spectroscopy  Infrared (IR) Spectroscopy  Ultraviolet-Visible (UV-VIS) Spectroscopy.
All atoms, except those that have an even atomic number and an even mass number, have a property called spin.
Chapter 13 - Spectroscopy YSU 400 MHz Nuclear Magnetic Resonance Spectrometer(s)
CHEM 344 Spectroscopy of Organic Compounds Lecture 1 4th and 5 th September 2007.
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY Basics of …….. NMR phenomenonNMR phenomenon Chemical shiftChemical shift Spin-spin splittingSpin-spin splitting.
W HAT IS NUCLEAR MAGNETIC RESONANCE ? State that NMR spectroscopy involves interaction of materials with low-energy radio frequency radiation. Describe.
Nuclear Magnetic Resonance
Nuclear Magnetic Resonance Spectroscopy. Principles of Molecular Spectroscopy: Electromagnetic Radiation.
INTEGRATION.
NMR Spectroscopy: 1 H NMR Spectroscopy: Nuclear Magnetic Resonance.
11.3: Analytical techniques can be used to determine the structure of a compound, analyze the composition of a substance, or determine the purity of a.
NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY … or NMR for short.
13.3 Introduction to 1 H NMR Spectroscopy. 1 H and 13 C both have spin = ±1/2 1 H is 99% at natural abundance 13 C is 1.1% at natural abundance The nuclei.
California State University, Monterey Bay CHEM312
NMR Nuclear Magnetic Resonance Chapter 13. Proton Nuclear Spin States Two states have the same energy in the absence of a magnetic field Magnetic Field.
Chapter 13 Spectroscopy Infrared spectroscopy Ultraviolet-visible spectroscopy Nuclear magnetic resonance spectroscopy Mass spectrometry Copyright © The.
Structure Elucidation Method
Nuclear Magnetic Resonance (NMR) for beginners. Overview NMR is a sensitive, non-destructive method for elucidating the structure of organic molecules.
IB NOTES: Modern Analytical Chemistry. Definitions: Qualitative Analysis: The detection of the __________________ but not the __________ of a substance.
MOLECULAR STRUCTURE ANALYSIS NMR Spectroscopy VCE Chemistry Unit 3: Chemical Pathways Area of Study 2 – Organic Chemistry.
11.1 Nuclear Magnetic Resonance Spectroscopy
Department of chemistry Smt. K. R. P. Kanya Mahavidyalaya, Islampur
Nuclear Magnetic Resonance (NMR) Spectroscopy
Nuclear Magnetic Resonance
Spectroscopy of Organic Compounds
Nuclear Magnetic Resonance Spectroscopy
Chapter 11 H-NMR.
Nuclear Magnetic Resonance
Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance (NMR)
Nuclear Magnetic Resonance (NMR)
Presentation transcript:

Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by the sample is measured as wavelength is varied. =>

Dorothy Crowfoot Hodgkin

Accomplishments

Vit B-12

Insulin

Cholesterol Story Isolated in 1832 Structure First reported in 1927 Structure Determined in 1942 by Dorothy Crowfoot Hodgson Synthesized in 1971

Proposed Structures for Cholesterol

Percy Julian

Synthesized Cortisone

Synthesized physotigmine

Photos

Chapter 13 Spectroscopy Infrared spectroscopy Ultraviolet-Visible spectroscopy Nuclear magnetic resonance spectroscopy Mass Spectrometry

13.1 Principles of Molecular Spectroscopy: Electromagnetic Radiation

is propagated at the speed of light has properties of particles and waves the energy of a photon is proportional to its frequency Electromagnetic Radiation

Figure 13.1: The Electromagnetic Spectrum 400 nm 750 nm Visible Light Longer Wavelength ( ) Shorter Wavelength ( ) Higher Frequency ( ) Lower Frequency ( ) Higher Energy (E) Lower Energy (E)

Figure 13.1: The Electromagnetic Spectrum UltravioletInfrared Longer Wavelength ( ) Shorter Wavelength ( ) Higher Frequency ( ) Lower Frequency ( ) Higher Energy (E) Lower Energy (E)

Cosmic rays  Rays X-rays Ultraviolet light Visible light Infrared radiation Microwaves Radio waves Cosmic rays  Rays X-rays Ultraviolet light Visible light Infrared radiation Microwaves Radio waves Figure 13.1: The Electromagnetic Spectrum Energy

13.2 Principles of Molecular Spectroscopy: Quantized Energy States

Electromagnetic radiation is absorbed when the energy of photon corresponds to difference in energy between two states.  E = h  E = h

electronicvibrationalrotational nuclear spin UV-Visinfraredmicrowaveradiofrequency What Kind of States?

13.3 Introduction to 1 H NMR Spectroscopy

1 H and 13 C both have spin = ±1/2 1 H is 99% at natural abundance 13 C is 1.1% at natural abundance The nuclei that are most useful to organic chemists are:

Nuclear Spin A spinning charge, such as the nucleus of 1 H or 13 C, generates a magnetic field. The magnetic field generated by a nucleus of spin +1/2 is opposite in direction from that generated by a nucleus of spin –1/2. + +

The distribution of nuclear spins is random in the absence of an external magnetic field.

NMR Spectroscopy Brief Intro Certain nuclei behave as bar magnets - consider proton  E =  h  Ho Using magnet Ho = 25,000 Gauss  E = cals/mol!!! Radio region 499, ,010only 20 nuclei excess!!! Ho

An external magnetic field causes nuclear magnetic moments to align parallel and antiparallel to applied field. H0H0H0H0

There is a slight excess of nuclear magnetic moments aligned parallel to the applied field. H0H0H0H0

Energy Differences Between Nuclear Spin States + + EEEE  E ' increasing field strength

Requirement for nuclei to behave as a bar magnet 1) odd mass number 1H1H 13 C 19 F 35 P 2) odd atomic number 14 N 7 NOTE: nuclei with even mass no and atomic number do not behave as a bar magnet! 12 C and 16 O WONDERFUL : can obtain proton resonances NMR without interference by these ubiquitous isotopes. Questions: Since many atoms are NMR active, will we not get overlapping signals in 1H-NMR spectra? NO!! We are saved by the fact that each NMR active nuclei has a different gyromagneto ratio - different region of radio radiation

Some important relationships in NMR The frequency of absorbed electromagnetic radiation is proportional to the energy difference between two nuclear spin states which is proportional to the applied magnetic field UnitsHz kJ/mol (kcal/mol) tesla (T)

150th Birthday mhttp:// m Most of us, think of Guglielmo Marconi as the father of radio, and Tesla is unknown for his work in radio. Marconi claimed all the first patents for radio, something originally developed by Tesla. Nikola Tesla tried to prove that he was the creator of radio but it wasn't until 1943, where Marconi's patents were deemed invalid; however, people still have no idea about Tesla's work with radio.

Some important relationships in NMR The frequency of absorbed electromagnetic radiation is different for different elements, and for different isotopes of the same element. For a field strength of 4.7 T: 1 H absorbs radiation having a frequency of 200 MHz (200 x 10 6 s -1 ) 13 C absorbs radiation having a frequency of 50.4 MHz (50.4 x 10 6 s -1 )

Some important relationships in NMR The frequency of absorbed electromagnetic radiation for a particular nucleus (such as 1 H) depends on its molecular environment. This is why NMR is such a useful tool for structure determination.

13.4 Nuclear Shielding and 1 H Chemical Shifts What do we mean by "shielding?" What do we mean by "chemical shift?"

Shielding An external magnetic field affects the motion of the electrons in a molecule, inducing a magnetic field within the molecule. The direction of the induced magnetic field is opposite to that of the applied field. C H H 0H 0H 0H 0

Shielding The induced field shields the nuclei (in this case, C and H) from the applied field. A stronger external field is needed in order for energy difference between spin states to match energy of rf radiation. C H H 0H 0H 0H 0

Chemical Shift Chemical shift is a measure of the degree to which a nucleus in a molecule is shielded. Protons in different environments are shielded to greater or lesser degrees; they have different chemical shifts. C H H 0H 0H 0H 0

Chemical Shift Chemical shifts (  ) are measured relative to the protons in tetramethylsilane (TMS) as a standard. Si CH 3 H3CH3CH3CH3C  = position of signal - position of TMS peak spectrometer frequency x 10 6

Chemical shift ( , ppm) measured relative to TMS Upfield Increased shielding Downfield Decreased shielding (CH 3 ) 4 Si (TMS)

Chemical Shift Example: The signal for the proton in chloroform (HCCl 3 ) appears 1456 Hz downfield from TMS at a spectrometer frequency of 200 MHz.  = position of signal - position of TMS peak spectrometer frequency x 10 6  = 1456 Hz - 0 Hz 200 x 10 6 Hx x 10 6  = 7.28

Chemical shift ( , ppm)  7.28 ppm H C Cl ClCl

13.5 Effects of Molecular Structure on 1 H Chemical Shifts protons in different environments experience different degrees of shielding and have different chemical shifts

Electronegative substituents decrease the shielding of methyl groups least shielded H most shielded H CH 3 F CH 3 OCH 3 (CH 3 ) 3 N CH 3 CH 3 (CH 3 ) 4 Si  4.3  3.2  2.2  0.9  0.0

Electronegative substituents decrease shielding H 3 C—CH 2 —CH 3 O 2 N—CH 2 —CH 2 —CH 3  0.9  1.3  1.0  4.3  2.0

Effect is cumulative CHCl 3  7.3 CH 2 Cl 2  5.3 CH 3 Cl  3.1

Methyl, Methylene, and Methine CH 3 more shielded than CH 2 ; CH 2 more shielded than CH H3CH3CH3CH3C C CH3CH3CH3CH3 CH 3 H  0.9  1.6  0.8 H3CH3CH3CH3C C CH3CH3CH3CH3 CH 3 CH2CH2CH2CH2  0.9 CH 3  1.2

Protons attached to sp 2 hybridized carbon are less shielded than those attached to sp 3 hybridized carbon HH HH HH C CHHHH CH 3 CH 3  7.3  5.3  0.9

But protons attached to sp hybridized carbon are more shielded than those attached to sp 2 hybridized carbon C C HH HH  5.3  2.4 CH 2 OCH 3 C C H

Protons attached to benzylic and allylic carbons are somewhat less shielded than usual  1.5  0.8 H3CH3CH3CH3C CH 3  1.2 H3CH3CH3CH3C CH 2  2.6 H 3 C—CH 2 —CH 3  0.9  1.3

Proton attached to C=O of aldehyde is most deshielded C—H  2.4  9.7  1.1 CC O H H CH 3 H3CH3CH3CH3C

Table 13.1 (p 554) Type of proton Chemical shift (  ), ppm Type of proton Chemical shift (  ), ppm C HR C H CC C H CO C H NC C HAr C H CC

Table 13.1 (p 554) Type of proton Chemical shift (  ), ppm Type of proton Chemical shift (  ), ppm C HBr COH C HNR C HCl HAr C CH C H O

Table 13.1 (p 554) Type of proton Chemical shift (  ), ppm 1-3HNR0.5-5HOR6-8HOAr10-13 CO HOHOHOHO