NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)

Slides:



Advertisements
Similar presentations
Neutrino group at CENBG
Advertisements

NEMO-III Status and prospects. 12 December 2005 HEP group Christmas meeting Vladimir Vasiliev.
NEMO-3 experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Coseners House, Abingdon.
Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Double Beta Decay review
Neutrino masses Determination of absolute mass scale with beta decays:
Double Beta Decay L=2 2: (A,Z)  (A,Z+2) + 2e- + 2ne
K. Zuber, University of Sussex Neutrinoless double beta decay SUSSP 61, St. Andrews, 9-23 Aug
SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Vladimir Vasiliev, UCL 2-6 May ’06, Stockholm on behalf of NEMO and SuperNEMO collaborations NEMO.
 NEMO-3 Detector  Preliminary results Performance of the detector  analysis for 100 Mo, 82 Se and 150 Nd  Background study for  research ( 208.
M. Dracos 1 Double Beta experiment with emulsions?
GERDA: GERmanium Detector Array
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
DBD matrix elements Welcome and aim of the workshop Experimental situation Outcome.
-Nucleus Interactions Double-beta Decay and Cristina VOLPE Institut de Physique Nucléaire Orsay, France.
From CUORICINO to CUORE: To probe the inverted hierarchy region On behalf of the CUORE collaboration DUSL Meeting, Washington DC November 2,-4, 2007 Frank.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory
The SuperNEMO experiment A very low background experiment Jérémy ARGYRIADES, LAL Orsay.
M. Dracos, CEA, 10/04/ Double Beta experiment with emulsions?
Search for  + EC and ECEC processes in 112 Sn A.S. Barabash 1), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow, Russia 2) CNBG, Gradignan,
New limits on  + EC and ECEC processes in 74 Se and 120 Te A.S. Barabash 1), F. Hubert 2), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow,
Contents Lecture 1 General introduction What is measured in DBD ? Neutrino oscillations and DBD Other BSM physics and DBD Nuclear matrix elements Lecture.
Double Beta Decay Present and Future
First results from NEMO 3 Experiment V. Vasiliev (ITEP), H. Ohsumi (Saga) and Ch. Marquet Nara, Japan, June 2003 NEMO collaboration.
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
Warsaw - NEMO initiative group Zenon Janas for Search for neutrinoless double  decay in NEMO-3 and SuperNEMO experiments Warszawa,
ZSJ IFD UW Zenon Janas Poszukiwanie podwójnego bezneutrinowego rozpadu beta w eksperymentach NEMO-3 i SuperNEMO Kraków,
Status of R&D of the SuperNEMO experiment Gwénaëlle Broudin-Bay LAL Orsay GDR neutrino – Bordeaux – Oct
FIRST RESULTS OF THE NEMO 3 EXPERIMENT Laurent SIMARD LAL Orsay (France) HEP-EPS 2003 conference CENBG, IN2P3-CNRS et Université de Bordeaux, France CFR,
19 July 2012Page 1 Neutrino Mass Julia Sedgbeer High Energy Physics, Blackett Laboratory.
Status of COBRA 6 th SNOLAB Workshop, Picture courtesy
Recent Results of the NEMO 3 Experiment Ladislav VÁLA Czech Technical University in Prague NOW2006, 9 th – 16 th September 2006, Conca Specchiulla, Italy.
Double beta decay and neutrino physics Osaka University M. Nomachi.
Probing neutrino mass with SuperNEMO Ruben Saakyan Ulisse at LSM Workshop 30 June 2008.
Results of NEMO 3 and status of SuperNEMO Ladislav VÁLA on behalf of the NEMO 3 and SuperNEMO collaborations Institute of Experimental and Applied Physics.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory FIRST RESULTS Xavier Sarazin 1 for the NEMO-3 Collaboration CENBG, IN2P3-CNRS et Université de Bordeaux,
Neutrino Ettore Majorana Observatory
Yu. Shitov, Imperial College, London  From NEMO-3 to SuperNEMO  Choice of nucleus for measurments  Calorimeter R&D  Low background R&D  Tracker R&D.
 decay:Present and Future Ruben Saakyan UCL 8 November 2004 Manchester University Particle Physics seminar PREVIEW Motivation Present status Status of.
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
Zakład Spektroskopii Jądrowej IFD UW Zenon Janas Poszukiwanie podwójnego bezneutrinowego rozpadu beta w eksperymencie NEMO-3 Warszawa,
1 TAUP - September 7, 2015S. Blot Investigating ββ decay with NEMO-3 and SuperNEMO Summer Blot, on behalf of the NEMO-3 and SuperNEMO experiments 7 September.
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
VIeme rencontres du Vietnam
Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month.
IOP HEPP Matthew Kauer Double beta decay of Zr96 using NEMO- 3 and calorimeter R&D for SuperNEMO IOP HEPP April Matthew Kauer UCL London.
NEMO3 analysis and SuperNEMO development Benjamin Richards D14.
Compared sensitivities of next generation DBD experiments IDEA - Zaragoza meeting – 7-8 November 2005 C. Augier presented by X. Sarazin LAL – Orsay – CNRS/IN2P3.
DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW.
Neutrino Ettore Majorana Observatory
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Stefano Torre University College London for NEMO3 and SuperNEMO collaborations Half day IoP Meeting 12 Oct 2011 Outline 0νββ and 2νββ Observation technique.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
1st Year Talk1 PEP Violation Analysis with NEMO3 and Calorimeter R&D for SuperNEMO Anastasia Freshville.
By Matthew Kauer First Year Report – 15 June 07 Measurement of 2b2ν Half-Life of Zr96 and Lightguide Studies for SuperNEMO Calorimeter Matthew Kauer UCL.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
Neutrinoless double electron capture experiment at LSM University of Muenster, Germany (Dieter Frekers et al.) Technical University of Dresden, Germany.
Nasim Fatemi-Ghomi, Group Christmass Meeting December Nasim Fatemi-Ghomi Double Beta Decay Study of 150 Nd at NEMO3 (The magic isotope!!)
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
Search for Neutrinoless Double-Beta Decay Werner Tornow Duke University & Triangle Universities Nuclear Laboratory (TUNL) & Kavli-Tokyo Institute of the.
SuperNEMO collaboration
SuperNEMO 1st Report to Oversight Committee
Nu_2-WP3: R&D for neutrinoless double beta decay experiments
Search for 0nbb decay with SuperNEMO
Double Beta experiment with emulsions?
Presentation transcript:

NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)

NEMO Collaboration  CENBG, IN2P3-CNRS et Université de Bordeaux, France  IReS, IN2P3-CNRS et Université de Strasbourg, France  LAL, IN2P3-CNRS et Université Paris-Sud, France  LPC, IN2P3-CNRS et Université de Caen, France  LSCE, CNRS Gif sur Yvette, France  IEAP, Czech Technical University, Prague, Czech Republic  Charles University, Prague, Czech Republic  INL, Idaho Falls, USA  ITEP, Moscou, Russia  JINR, Dubna, Russia  JYVASKYLA University, Finland  MHC, Massachusets, USA  Saga University, Japan  UCL London, UK  FMFI, Comenius University, Bratislava, Slovakia

NEMO-3 Double Beta Decay Experiment: Last Results PLAN I. Introduction II. NEMO-3 detector III. Results IV. Conclusion

I. Introduction 0 + _______ ////// 100 Tc 0 + _______ /////// 100 Mo 0 + ______ 2 + ______ 0 + _____ ////// 100 Ru Q ββ = MeV 100 Mo  100 Ru + 2e Mo  100 Ru + 2e - + χ Mo  100 Ru + 2e - + 2ν

Experimental signature: 2 electrons E1+ E2=Q NEUTRINOLESS DOUBLE BETA DECAY

Oscillation experiments  Neutrino is massive!!!  However, the oscillatory experiments cannot solve the problem of the origin of neutrino mass (Dirac or Majorana? ) and cannot provide information about the absolute value of mass (because the m 2 is measured).  This information can be obtained in 2-decay experiments. =   Uej2 e i j m j  Thus searches for double beta decay are sensitive not only to masses but also to mixing elements and phases j.

What one can extract from 2β- decay experiments?   Nature of neutrino mass (Dirac or Majorana?).  Absolute mass scale (value or limit on m 1 ).  Type of hierarchy (normal, inverted, quasi-degenerate).  CP violation in the lepton sector.

Neutrinoless double beta decay is being actively searched, because it is closely related to many fundamental concepts of nuclear and particle physics:  - the lepton number nonconservation;  - the existence of neutrino mass and its origin  (Dirac or Majorana?);  - the presence of right-handed currents in electroweak  interactions;  - the existence of Majoron;  - the structure of Higg's sector;  - supersymmetry;  - heavy sterile neutrino;  - the existence of leptoquarks.

3 m 4 m B (25 G) 20 sectors Source : 10 kg of  isotopes cylindrical, S = 20 m 2, 60 mg/cm 2 Tracking detector : drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H 2 O Calorimeter : 1940 plastic scintillators coupled to low radioactivity PMTs Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) Neutron shield: borated water (~30 cm) + Wood (Top/Bottom/Gapes between water tanks) The NEMO3 detector Fréjus Underground Laboratory : 4800 m.w.e. Able to identify e , e ,  and 

 isotope foils scintillators PMTs Calibration tube Cathodic rings Wire chamber

100 Mo kg Q  = 3034 keV  decay isotopes in NEMO-3 detector 82 Se kg Q  = 2995 keV 116 Cd 405 g Q  = 2805 keV 96 Zr 9.4 g Q  = 3350 keV 150 Nd 37.0 g Q  = 3367 keV Cu 621 g 48 Ca 7.0 g Q  = 4272 keV nat Te 491 g 130 Te 454 g Q  = 2529 keV  measurement External bkg measurement  search (All enriched isotopes produced in Russia)

100 Mo foil Transverse view Longitudinal view Run Number: 2040 Event Number: 9732 Date: Geiger plasma longitudinal propagation Scintillator + PMT Deposited energy: E 1 +E 2 = 2088 keV Internal hypothesis: (  t) mes –(  t) theo = 0.22 ns Common vertex: (  vertex)  = 2.1 mm Vertex emission (  vertex) // = 5.7 mm Vertex emission Transverse view Longitudinal view Run Number: 2040 Event Number: 9732 Date: Criteria to select  events: 2 tracks with charge < 0 2 PMT, each > 200 keV PMT-Track association Common vertex Internal hypothesis (external event rejection) No other isolated PMT (  rejection) No delayed track ( 214 Bi rejection) Trigger: at least 1 PMT > 150 keV  3 Geiger hits (2 neighbour layers + 1) Trigger rate = 7 Hz  events: 1 event every 2.5 minutes Typical  2 event observed from 100 Mo  events selection in NEMO-3

(Data Feb – Dec. 2004) T 1/2 = 7.11  0.02 (stat)  0.54 (syst)  y Phys Rev Lett 95, (2005) 100 Mo 2  2 preliminary results 7.37 kg.y Cos(  ) Angular Distribution events 6914 g 389 days S/B = 40 NEMO Mo E 1 + E 2 (keV) Sum Energy Spectrum events 6914 g 389 days S/B = 40 NEMO Mo Background subtracted Data 2  2 Monte Carlo Data 2  2 Monte Carlo Background subtracted

Background subtracted 82 Se T 1/2 = 0.96  0.03 (stat)  0.1 (syst)  y 116 Cd T 1/2 = 2.8  0.1 (stat)  0.3 (syst)  y (SSD) 150 Nd T 1/2 = 9.7  0.7 (stat)  1.0 (syst)  y 96 Zr T 1/2 = 2.0  0.3 (stat)  0.2 (syst)  y 116 Cd 150 Nd 96 Zr Data  simulation Data  simulation Data  simulation NEMO g days 72 events S/B = g days 449 events S/B = g days 1371 events S/B = 7.5 E 1 +E 2 (keV) E 1 +E 2 (MeV) 82 Se NEMO g 389 days 2750 events S/B = 4 Background subtracted Data 2  2 Monte Carlo 2  2 preliminary results for other nuclei

T 1/2 = [3.9±0.7(stat)±0.6(syst)]·10 19 y 48 Ca. 2  2 preliminary result (Esmall > 0.6 or 0.7 MeV, cos  < 0.0) Very Small Background !! Esmall > 0.6 MeV cos  0.0 Esmall > 0.7 MeV cos  0.0

 results for 100 Mo T 1/2 = 7.11  0.02 (stat)  0.54 (syst)  y Phys. Rev. Lett. 95 (2005) SSD model confirmed HSD, higher levels contribute to the decay SSD, 1  level dominates in the decay (Abad et al., 1984, Ann. Fis. A 80, 9) 100 Mo 00 100 Tc 11 Decay to the excited 0 + state of 100 Ru T 1/2 = (stat)  0.8 (syst)  y To be published soon  Phase I + II ( 587d) Use MC Limit approach: shape information, different background level for PI and PII E 1 +E 2 >2 MeV evs MC = ± 70    T 1/2 > 5.6∙10 23 y, 90% CL Window method [ ] MeV, (690d) 14 evs MC = 13.4   =8.2 % T 1/2 > 5.8∙10 23 y, 90% CL Simkovic, J. Phys. G, 27, 2233, 2001 Single electron spectrum different between SSD and HSD E single (keV) SSD simulation

 results for 82 Se T 1/2 = 9.6  0.3 (stat)  1.0 (syst)  y Phys. Rev. Lett. 95 (2005)  Phase I + II ( 587d) Use MC Limit approach E 1 +E 2 >2 MeV 238 evs, MC = ± 7,    T 1/2 > 2.7∙10 23 y, 90% CL Window method [ ] MeV, (690d) 7 evs, MC = 6.4,   =14.4 % T > 2.1∙10 23 y, 90% CL

NucleiT 1/2, y, eV [1-3], eV [4] Experiment 76 Ge >1.910 25 ≈1.210 25 (?) >1.610 25 < ≈ (?) < < ≈ 0.7(?) < HM Part of HM IGEX 130 Te >2.410 24 < < CUORICINO 100 Mo >5.810 23 < < NEMO 136 Xe >4.510 23 < < DAMA 82 Se >2.110 23 < < NEMO 116 Cd >1.710 23 < < SOLOTVINO Best present results: 0 decay

References [1] F. Simkovic, G. Pantis, J.D. Vergados and A. Faessler, Phys. Rev. 60 (1999) [2] S. Stoica and H.V. Klapdor-Kleingrothaus, Nucl. Phys. A 694 (2001) 269. [3] O. Civitarese and J. Suhonen, Nucl. Phys. A 729 (2003) 867. [4] V.A. Rodin, A. Faessler, F. Simkovic and P. Vogel, Nucl. Phys. A 766 (2006) 107.

Decay with Majoron emission n=1 * n=2 * n=3 * n=7 * 100 Mo >2.7∙10 22 g<( )∙10 -4 >1.7∙10 22 >1.0∙10 22 >7∙ Se >1.5∙10 22 g<( )∙10 -4 >6.0∙10 21 >3.1∙10 21 >5.0∙10 20 * R.Arnold et al. Nucl. Phys. A765 (2006) 483 NEMO-3 results

NEMO-3 expected sensitivity For 5 years of data: 100 Mo: T 1/2 ~ 2·10 24 y (90% C.L.) < 0.3 – 1.4 eV 82 Se: T 1/2 ~ 8 ·10 23 y (90% C.L.) < 0.6 – 1.6 eV

CONCLUSION 1. New strong limits on 2β(0) decay of 100 Mo and 82 Se have been obtained: T 1/2 > 5.8·10 23 y ( < eV) T 1/2 > 2.1·10 23 y ( < eV) 2. New strong limits on different types of 2β(0νM) decay of 100 Mo and 82 Se have been obtained. 3. Precise investigation of 2β(2) decay for many nuclei has been done. 4. Detector has been running under “radon-free” conditions and all results will be improved in the future.