Presentation is loading. Please wait.

Presentation is loading. Please wait.

DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW.

Similar presentations


Presentation on theme: "DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW."— Presentation transcript:

1 DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW

2 OUTLINE  Introduction  2 - (2) -decay to the excited ststates - 100 Mo - 150 Nd  2 - (0) –decay to the excite states  ECEC to the excited states  Conclusion

3 I. Introduction

4 1.1. Historical introduction E. Fiorini (1977, NEUTRINO’77) – first time obtained limit on 0 + -2 + decay in Ge-76 (as by-product for 0 + - 0 + transition) *): T 1/2 (0)> 3·10 21 y (68% C.L.) *) Of course, from geochemical experiments one can extract limits too.

5 1982 – first special experimental work to investigate 2- decay to the excited states was done: E. Bellotti et al., Lett. Nuov. Cim. 33 (1982) 273. ( 58 Ni, 76 Ge, 92 Mo, 100 Mo, 148 Nd, 150 Nd; Transitions to 2 + 1, O + 1, 2 + 2, … excited states) Limits on the level (1.2-3.2)·10 21 y for 76 Ge and ~ 10 18 -10 19 y for other nuclei were obtained.

6 1983-1988  Many new results for 76 Ge (0 + -2 + ). And even “evidence” of the decay on 2.5 level (T 1/2  10 22 y) have been obtained.  3 experiments were done by E. Norman ( 50 Cr, 58 Ni, 64 Zn, 92 Mo, 94 Zr, 96 Zr, 96 Ru, 106 Cd, 116 Cd, 124 Sn; natural samples). Limits on the level ~ 10 17 -10 19 y were obtained.

7 1989-1990  It was demonstrated that 2(2;0+- 0 + 1 )-decay can be detected in 100 Mo, 96 Zr and 150 Nd by existing low-background HPGe detectors and new experiments were proposed (A.S.B. preprint ITEP, 188-89, 1989; JETP Lett. 51 (1990) 207).  ITEP-USC-PNL-UM experiment with 1 kg of 100 Mo was started on 30 May 1990 (in Soudan mine).

8 Measurement was stopped in September’91  First “positive” result was reported at a few International Conferences (Moriond’91, TAUP’91, WEIN’92,…)  Final result was published in 1995 [PL B 345 (1995) 408]: T 1/2 = 6.1 +1.8 -1.1 ·10 20 y

9 1999 – 2-nd positive result for 100 Mo; 2001 – 3-d positive result for 100 Mo (in ITEP-TUNL experiment); 2004 – 1-st positive result for 150 Nd; 2007 – 4-th positive result for 100 Mo (in NEMO-3 experiment).

10

11 ITEP-TUNL experiment

12 1.2. Present motivation  Nuclear spectroscopy  NME problem  Checking of some “creasy” ideas ( “bosonic” neutrino, …)  0-decay: - very nice signature (2 - ); - high sensitivity (ECEC; resonance conditions).

13 II. 2 - (2)-decay to the excited states Table 1. 2 transition to 2 + 1 excited state. Nucle i E 2, keVT 1/2, y Exper. Theory, 2007[1] Theory, 1996- 1997 [2,3] 48 Ca3288.5>1.8·10 20 1.7·10 24 - 150 Nd3033.6>9.1·10 19 - - 96 Zr2572.2>7.9·10 19 2.3·10 25 (3.8-4.8)·10 21 100 Mo2494.5>1.6·10 21 1.2·10 25 3.4·10 22 [4]

14 Table 1. (Continue) 82 Se2218.5>1.4·10 21 -2.8·10 23 - 3.3·10 26 130 Te1992.7>2.8·10 21 6.9·10 26 (2.8-15)·10 23 136 Xe1649.4 -3.9·10 26 2.0·10 24 116 Cd1511.5>2.3·10 21 >3.4·10 26 1.1·10 24 76 Ge1480>1.1·10 21 >5.8·10 28 1.0·10 26 110 Pd1342 ->1.5·10 25 -

15 Table 2. 2-decay to 0 + 1 excited state Nucle i E 2, keVT 1/2, y Exper. Theory [2] Theory [4] 150 Nd2627.1=1.4·10 20 - 96 Zr2202.5>6.8·10 19 2.7·10 21 3.8·10 21 100 Mo1903.7=6.2·10 20 1.6·10 21 [5]2.1·10 21 82 Se1507.5>3.0·10 21 (1.6-3.3)·10 21 - 48 Ca1274.8>1.5·10 20 - -

16 Table 2. (Continue) 124 Sn1131 - - - 116 Cd1048.2>2.0·10 21 1.1·10 22 1.1·10 21 76 Ge916.7>6.2·10 21 7.5·10 21 - 3.1·10 23 4.5·10 21 136 Xe889 -2.5·10 21 6.3·10 21 130 Te735.7>2.3·10 21 5.1·10 22 – 1.4·10 23 -

17 References [1] A.A. Raduta and C.M. Raduta, Phys. Lett. B 647 (2007) 265. [2] M. Aunola and J. Suhonen, Nucl. Phys. A 602 (1996) 133. [3] J. Toivanen and J. Suhonen, Phys. Rev. C 55 (1997) 2314. [4] S. Stoica and I. Mihut, Nucl. Phys. A 602 (1996) 197. [5] J.G. Hirsch et al., Phys. Rev. C 51 (1995) 2252.

18 Table 3. Present “positive” results on 2  (2 ) decay of 100 Mo to the first 0 + excited state of 100 Ru T 1/2, y; x10 20 NS/BYear, method 6.1 +1.8 -1.1 9.3 +2.8 -1.7 ± 1.4 6.0 +1.9 -1.1 ± 0.6 5.7 +1.3 -0.9 ± 0.8 133 153 19.5 37.5 ~ 1/3 8/1 3/1 1995, HPGe [6] 1999, HPGe (many samples) [7] 2001, 2xHPGe (coincidence) [8,9] 2007, NEMO-3, (2e+2  ) [10] Average value: 6.2 +0.9 -0.7 ·10 20 y

19 References [6] A.S. Barabash et al., Phys. Lett. B 345 (1995) 408. [7] A. S. Barabash et al., Phys. At. Nucl. 62 (1999) 2039. [8] L. De Braeckeleer et al., Phys. Rev. Lett. 86 (2001) 3510. [9] M.J. Hornish et al., Phys. Rev. C 74 (2006) 044314. [10] R. Arnold et al., Nucl. Phys. A 781 (2007) 209.

20 NEMO-3 100 Mo: bb decay to exc. states 2  decay to the 0 1 + state: S/B = 3.0 T 1/2 =[ 5.7 +1.3 -0.9 (stat) ± 0.8(syst)]  10 20 y 0  decay to the 0 1 + state: T 1/2 > 8.9  10 22 y @ 90 % C.L. 2  decay to the 2 1 + state: T 1/2 > 1.1  10 21 y @ 90 % C.L. 0  decay to the 2 1 + state: T 1/2 > 1.6  10 23 y @ 90 % C.L. Nucl. Phys. A 781 (2007) 209 2  decay to the 0 1 + state: S/B = 3.0 T 1/2 =[ 5.7 +1.3 -0.9 (stat) ± 0.8(syst)]  10 20 y 0  decay to the 0 1 + state: T 1/2 > 8.9  10 22 y @ 90 % C.L. 2  decay to the 2 1 + state: T 1/2 > 1.1  10 21 y @ 90 % C.L. 0  decay to the 2 1 + state: T 1/2 > 1.6  10 23 y @ 90 % C.L. Nucl. Phys. A 781 (2007) 209 Clear topology: 0 1 + : 2e - + 2  in time & energy and TOF cuts 2 1 + : 2e - + 1  in time & energy and TOF cuts 100 Mo 0+0+ 2 1 + (540 keV) 0 1 + (1130 keV) 4 1 + (1227 keV) 0 + (g.s.) 100 Ru 2 2 + (1362 keV) 3034 keV 11 22 NEMO-3; 334.3 days of data (Phase I)

21 TOP VIEWSIDE VIEW 11 22 11 22 e1e1 e2e2 e1e1 e2e2 100 Mo (NEMO-3) Reconstructed event-candidate

22 100 Mo (NEMO-3) The main characteristics of selected events

23 150 Nd Decay scheme 150 Nd 0+0+ 2 1 + (333.9keV) 0 1 + (740.4 keV) 4 1 + (773.3 keV) 0 + (g.s.) 150 Sm 2 2 + (1046.1 keV) 3367 keV 11 22 E  1 = 333.9 keV E  2 = 406.5 keV

24 SCHEME OF EXPERIMENT E = 1.9 keV (for 1332 keV) T = 11320.5 h Experiment is done in Modane Underground Laboratory, 4800 m w.e.

25 Energy spectrum in the range 333.9 keV

26 Energy spectrum in the range 406.5 keV

27 Analysis of events in the range of peaks under study Peak, keV333.9 ± 1.12406.5 ± 1.12 Number of events 779603 Continuous background 656.6484.5 Isotopes E, keV 214 Bi 227 Th 228 Ac 333.1, 334.78; 334.37; 332.37 214 Bi 211 Pb 405.74 404.85 Contributio n from background 8.8 22.6 5.49.7 8.7 Excess of events 86 ± 28100 ± 25

28 150 Nd. Transition to the 0 + excited state T 1/2 = [1.4 +0.4 -0.2 (stat) ± 0.3(syst)]·10 20 y [JETP. Lett. 79 (2004) 10]

29 Comparison of NME for transition to the 0 + ground and 0 + 1 excited states (for 100 Mo and 150 Nd)  Conclusion is NME(g.s.)  NME(0 + 1 )  But, in fact, it looks like: NME(g.s.)  (1.2-1.3)xNME(0 + 1 )

30 III. 2(0)-decay to excited states Very nice signature: 2e - and two (one) gamma with fixed energy  Possibility to have “zero” background  Possibility to have high sensitivity (if registration efficiency and energy resolution are high enough)

31 3.1. 2(0)-decay to 2 + 1 excited state Many years people thought that this decay is sensitive only to right-handed currents. T. Tomoda demonstrated that this is not through: “…relative sensitivity of 0 + -2 + decays to the neutrino mass and the right-handed currents are comparable to those of 0 + -0 + decays.” [T. Tomoda, Phys. Lett. B 474 (2000) 245] The decay is suppressed in ~ two order of magnitude in comparison to transition to 0 + g.s.

32 Table 4. Best present limits on 2  (0 )- decay to 2 + 1 excited state NucleiE 2, keVT 1/2, y (90%CL) 76 Ge1480> 8.2·10 23 (G-M) 100 Mo2494.5> 1.6·10 23 (NEMO-3) 130 Te1992.7> 1.4·10 23 (MiBeta) 116 Cd1511.5> 2.9·10 22 (Solotvino) 136 Xe1649.4> 6.5·10 21 (Milan) 82 Se2218.5> 2.8·10 21 (HPGe)

33 Table 5. Best present limits on 2(0)-decay to the 0 + 1 excited state NucleiE 2 , keVT 1/2, y (90%CL) Theory [11- 14] Theory [15] 150 Nd2627.1>1.0·10 20 - - 96 Zr2202.5>6.8·10 19 2.6·10 24 *) - 100 Mo1903.7>8.9·10 22 2.6·10 26 *) 1.5·10 25 *) 82 Se1507.5>3.0·10 21 9.5·10 26 *) 4.5·10 25 *) 48 Ca1274.8>1.5·10 20 - -

34 Table 5. (Continue) 116 Cd 1048.2>1.4·10 22 1.25·10 27 *) - 76 Ge 916.7>1.3·10 22 5.6·10 26 *) 2.4·10 26 *) 130 Te 735.3>3.1·10 22 7.5·10 25 - *) For = 1 eV [11] J. Suhonen, Phys. Lett. B 477 (2000) 99. [12] J. Suhonen, Phys. Rev. C 62 (2001) 042501. [13] J. Suhonen, Nucl. Phys. A 700 (2002) 649. [14] J. Suhonen and M. Aunola, Nucl. Phys. A 723 (2003) 271. [15] F. Simkovic et al., Phys. Rev. C 64 (2001) 035501.

35 2(0)-decay to 0 + 1 excited state  Future possibilities: - MAJORANA and GERDA with 76 Ge  ~ 10 27 y; - CUORE with 130 Te  ~ 10 26 y; - SuperNEMO with 82 Se (or 150 Nd)  ~ 10 24 -10 25 y;

36 IV. ECEC to the excited states  1994 (A.S.B. JETP Lett. 59 (1994) 677). Main assumption: NME(2 ; 0 + g.s. )  NME(2 ; 0 + 1 ): then T 1/2 (0 + 1 ) ~ 10 21 -10 22 y for 96 Ru, 106 Cd, 124 Xe, 136 Ce; ~ 10 23 y for 78 Kr and 130 Ba Very nice signature: in addition to two X-rays we have here two gamma with strictly fixed energy (E ~ 300-1300 keV)  New experiments were proposed

37 Table 6. Best present limits on ECEC(2) to the 0 + 1 excited state NucleiE ECEC, keVT 1/2, y (90%CL) Theory 130 Ba1236>1.5·10 21 *) ~ 10 22 -10 24 106 Cd1580>7.3·10 19 ~ 10 21 -10 23 78 Kr1343>1.2·10 21 **) ~ 10 23 -10 27 92 Mo230>8.1·10 20 ~ 10 29 96 Ru1519>4.5·10 16 ~ 10 23 -10 27 *) Extracted from geochemical experiment **) Extracted from result for 0 + -0 + g.s. transition

38 IV.2. ECEC(0); resonance conditions Transition to the ground state. For the best candidates ( = 1 eV):  +  + (0) ~ 10 28 -10 30 y  + EC(0) ~ 10 26 -10 27 y ECEC(0) ~ 10 28 -10 31 y (One can compare these values with ~ 10 24 -10 25 y for 2 - -decay)

39 ECEC(0) to the ground state  2e b + (A,Z)  (A,Z-2) + 2X +  brem + 2 + e + e - + e - int E ,.. = M -  e1 - e2 Suppression factor is ~ 10 4 (in comparison with EC + (0)) – M. Doi and T. Kotani, Prog. Theor. Phys. 89 (1993)139.

40 Resonance conditions  In 1955 (R.Winter, Phys. Rev. 100 (1955) 142) it was mentioned that if there is excited level with “right” energy then decay rate can be very high. (Q’-E has to be close to zero. Q’-energy of decay, E- energy of excited state)  In 1982 the same idea for transition to ground and excited states was discussed (M. Voloshin, G. Mizelmacher, R. Eramzhan, JETP Lett. 35 (1982)).  In 1983 (J. Bernabeu, A. De Rujula, C. Jarlskog, Nucl. Phys. B 223 (1983) 15) this idea was discussed for 112 Sn (transition to 0 + excited state). It was shown that enhancement factor can be on the level ~ 10 6 !

41 J. Bernabeu, A. De Rujula, C. Jarlskog, Nucl. Phys. B 223 (1983) 15 112 Sn  112 Cd [0 + (1871)] M = 1919.5±4.8 keV Q’(KK;0 + ) = M – E*(0 + ) – 2E K = = (-4.9 ± 4.8) keV T 1/2  3·10 24 y (for m = 1 eV) (if Q’ ~ 10 eV)

42 Resonance conditions  In 2004 the same conclusion was done by Z. Sujkowski and S. Wycech (Phys. Rev. C 70 (2004) 052501).  Resonance condition (using EC(2) arguments): E brems = Q’ res = E(1S,Z-2)-E(2P,Z-2) (i.e. when the photon energy becomes comparable to the 2P-1S level difference in the final atom) Q’-Q’res < 1 keV

43 Decay-scheme of 74 Se Here Q = M = 1209.7 keV Q’ = M - 2E b Q’(E*) = Q’ – 1204.2

44 74 Se. (Nucl. Phys. A 785 (2007) 371)  400 cm 3 HPGe detector (Modane Underground Laboratory; 4800 m w.e.)  563 g of natural Se (4.69 g of 74 Se)  Measurement time is 436.56 h

45 74 Se

46 74 Se (Nucl. Phys. 785 (2007) 371.)

47 74 Se. (Nucl. Phys. A 785 (2007) 371) Transition to 2 + 2 (1204.2 keV) state (595.8 keV and 608.4 keV lines were investigated): T 1/2 (0;L 1 L 2 ) > 0.55·10 19 y

48 74 Se. Possible improvements  1 kg of 74 Se  ~ 3·10 21 y  200 kg of 74 Se (using an installation such as GERDA or MAJORANA)  ~ 10 26 y

49 Other isotope-candidates NucleiA,% M,keV E*,keVEKEK E L2 74 Se0.891209.7±2.31204.2(2 + )11.11.23 78 Kr0.352846.4±2.02838.9(2 + )12.61.47 96 Ru5.522718.5±8.22700(?)202.86 106 Cd1.252770±7.22741.0(1,2 + )24.33.33 112 Sn0.971919.5±4.81871.0(0 + )26.73.73 130 Ba0.112617.1±2.02608.4(?)34.55.10 136 Ce0.202418.9±132399.9(1 +,2 + 2392.1(1 +,2 + 37.45.62 162 Er0.141843.8±5.61745.7(1 + )53.88.58

50 Table 7. Best present limits on ECEC(0) to the excited state (for isotope-candidates with possible resonance conditions) NucleiE*(J  f )T 1/2, y 106 Cd2741 (1,2 + )> 3·10 19 [16] > 5·10 19 *) [17] 74 Se1204.2(2 + )> 0.55·10 19 [18] 130 Ba2608.4(?)> 1.5·10 21 [19,20] (geochemical) 78 Kr2838.9(2 + )> 1.2·10 21 *) [21] *) Extracted from result for 2(0 + -0 + g.s. ) transition

51 References [16] P. Belli et al., Astr. Phys. 10 (1999) 115. [17] N.I. Rukhadze et al., Phys. At. Nucl. 69 (2006) 2117. [18] A.S. Barabash et al., Nucl. Phys. A 785 (2007) 371. [19] A. P. Meshik et al., Phys. Rev. 64 (2001) 035205. [20] A.S. Barabash and R.R. Saakyan, Phys. At. Nucl. 59 (1996) 179. [21] Ju.M. Gavriljuk et al., Phys. At. Nucl. 69 (2006) 2124.

52 g.s.-g.s. transitions 152 Gd (0.2%), 164 Er (1.56%), 180 W(0.13%) (There are only X-rays in this case)

53 Problems  There is no good theoretical description  Accuracy of M (and Q as a result) is not very good (~ 2-10 keV) [It is possible to improve the accuracy of M to ~ 200 eV]

54 CONCLUSION  2(2)-decay to 0 + excited state was detected for 100 Mo and 150 Nd  There are good prospects to search for 2(2) and 2(0)-decay to 0 + excited states in future (large) experiments  ECEC(0) is a “new-old” possibility to search for neutrino mass (in case of resonance conditions)


Download ppt "DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW."

Similar presentations


Ads by Google