Mechanical and Industrial Engineering University of Massachusetts Amherst, MA, USA Nano-Impact Jonathan P. Rothstein and Mark Tuominen.

Slides:



Advertisements
Similar presentations
Introduction to Nanotechnology
Advertisements

Introduction to Nanotechnology
More Real-World Applications of Nanotechnology: Energy
Nanoscience, Nanotechnology and Nanomanufacturing Exciting new science and technology for the 21st century.
Nanotechnology:Data Storage Activity and Other Topics Nanotechnology:Data Storage Activity and Other Topics Mark Tuominen Professor of Physics Science.
Nanotechnology What, How, Why? UMass Science Saturday, February 28, 2009.
Mechanical and Industrial Engineering University of Massachusetts Amherst, MA, USA Nano-Impact Jonathan P. Rothstein 1 and Mark Tuominen 2 1. Mechanical.
Importance of metrology in developing nanotehnologies Alina Catrinel Ion Universitatea Politehnica Bucuresti.
Professor Dave Delpy Chief Executive of Engineering and Physical Sciences Research Council Research Councils UK Impact Champion Competition vs. Collaboration:
Module A-2: SYNTHESIS & ASSEMBLY
Mechanical and Industrial Engineering University of Massachusetts Amherst, MA, USA Nano-Impact Jonathan P. Rothstein and Mark Tuominen.
Nanomanufacturing: LCA Challenges for Deposition Processes and Coated Products Presentation by Delcie R Durham Mechanical Engineering Nanotechnology and.
Nanoscience and Manufacturing
Nathan S. Lewis George L. Argyros Professor of Chemistry California Institute of Technology with George Crabtree, Argonne NL Arthur Nozik, NREL Mike Wasielewski,
1 Cyberinfrastructure Framework for 21st Century Science & Engineering (CF21) IRNC Kick-Off Workshop July 13,
Disruptive Innovations through Nanotechnology Presented by Puneet Mehrotra ( Managing Director ) Nano Science & Technology Consortium Reinste Nano Ventures.
NANOTECHNOLOGY.
Nanotechnology By: Razia A. Faiza S. Wyshnavy Y..
Nanotechnology: The Public and Emerging Technologies Nanotechnology: Public Dr. William Y. B. Chang Director Beijing Office U.S. National Science Foundation.
Frontiers in science and engineering Nanotechnology M.C. Roco B. Kramer, Presenter F. Frankel - copyright ENG Advisory Committee November 16, 2006.
INTRODUCTION TO NANOTECHNOLOGY EEE5425 Introduction to Nanotechnology1.
Generator TM as a new tool for job creation and a prerequisite to the incubation/acceleration processes for commercializing advanced technologies Dr. Zvi.
Informatics for Nanomanufacturing Data—Tools—Sharing Jan. 9, 2014: Report to Nano Working Group Mark Tuominen - National Nanomanufacturing Network (NNN)
Interdisciplinary Learning and Nanoimpact
State of the World Shrinking Science: Introduction to Nanotechnology Chapter 5.
Science and Technology of Nano Materials
Nanotechnology Manfred Scriba Materials Sciences and Manufacturing 27 October 2006
NanotechnologyNanoscience Modeling and Simulation Develop models of nanomaterials processing and predict bulk properties of materials that contain nanomaterials.
© 2009 IBM Corporation Let’s Build a Smarter Planet Thongchai Watanasoponwong – Country Manager Power Systems, STG September 15 th, 2009 Green IT เทคโนโลยีสีเขียวเพื่อสิ่งแวดล้อม.
CHAPTERS 2&3 Engineering Majors 1 ELEC 104, Fall 2010 Dr. McKinney.
 Basic Definition:  Basic Definition: Technology of building or creating products such as electronic circuits from single atoms and molecules Deals.
FP7 Cooperation Work Programme NANOSCIENCES, NANOTECHNOLOGIES, MATERIALS AND NEW PRODUCTION TECHNOLOGIES - NMP.
Instrumentation and Metrology for Nanocharacterization.
Nanotechnology: Applications, Impacts, Challenges, and Trends Joe Kostkowski Dan McDonald April 29, 2005.
NanoParticles L.O: To understand what nanoscience is, and be able to evaluate nanomaterials.
1 New Materials, Surfaces and Sensing Applications Novel Functional Materials Intelligent Materials Surface Functionalisation Nanomaterials and Nanocoatings.
08/14/11 presentation by Nuwan Liyanage.  Introduction  Four Generations of Nanotechnology  Nanofactory  Nanoassembler  Did You Know?  Nanowires.
Nanotechnology The biggest science and engineering initiative since the Apollo program.
Building the Europe of Knowledge Proposals for the 7 th Research Framework Programme
Metallic and Ionic Nanoparticles
Nano-electronics Vision: Instrumentation and methods for analysis of atomic scale physical properties, and methods to correlate these properties with nano-electronic.
Wind & Transmission: The Clean Energy Superhighway Mark Lauby Manager, Reliability Assessments, NERC.
Nanoscale Science and Engineering. Nanoscale Science and Engineering embodies fundamental research and technology development of materials, structures,
Nanotechnology What, How, Why? NSTA, Indianapolis, March 30, 2012.
Nanotechnology, You, and the Environment Lisa Wininger and Sara Syswerda.
Understanding Science and Technology Through K-8 Education Rollie Otto Center for Science and Engineering Education, Berkeley Lab June 28, 2007.
CHAPTERS 2&3 Engineering Majors 1 ELEC 104, Fall 2010 Dr. McKinney.
Supported primarily by the Nanoscale Science and Engineering Initiative of the National Science Foundation under NSF Award Number CMMI © Copyright.
3M Touch Systems © 3M All Rights Reserved. 3M CONFIDENTIAL Company Overview Date.
1 1 nanometer (nm) = 10 hydrogen atoms side-by-side Meaning of “nano”: One billionth (10x-9) Nanometer (nm) = one billionth of a.
Research Advances Towards Low Cost, High Efficiency PEM Electrolysis Dr. Katherine Ayers Presented by: Larry Moulthrop NHA 2010, Long Beach, CA.
Emily Nott Relationship Manager - Research Councils IT Community Summit 3 April 2008 Technology Strategy Board V
Nature Inspired Nanomaterials Easy to clean and self cleaning materials Florian Doll Ruta Ruperte Nina Muratovska Sigrid Aamot Jan Dobeš 1.
Nanotechnologies: evolution and perspectives in the chemical industry EESC, Nanotechnology for a competitive chemical industry September 9, 2015 Dr. Pierre.
Dennis Utterback Office of Research and Development U.S. Environmental Protection Agency Federal Environmental Symposium June 6, 2007 Understanding the.
Nanosafety ISO TC 229 Nanotechnologies Standardization in the field of nanotechnologies that includes either or both of the following:  1. Understanding.
Driving Innovation V Advanced Materials IOM3 Light Metals Board 1 CHT, London 27 th March 2009 Dr Alan Hooper Lead Technologist : Advanced Materials.
Nano means: o Prefix that means “one-billionth” o 10⁻⁹ o For example: nanometer (nm) is one-billionth of a meter o Red blood cell is about 6,000-10,000.
Science, Technology, Engineering, and Innovation as Instruments for Enhancing Competitiveness Organization of American States Meeting of Ministers and.
Evaluation itemsPoints/10 Relevance to topics Clearness of introduction Background and theory Delivery of knowledge Presentation materials and handout.
NOKIA MORPH Presented by: V.Divya 09071A Introduction History Technology Features Limitations Future Scope References Conclusion Questions ? OUTLINE:
Science and Technology of Nano Materials snistforum.com.
Mechanical & Manufacturing Engineering Program
Since the 1970s, the innovative development of nanoparticles is due to a combination of theory and experiments in the fields of physics chemistry materials.
AEROSPACE SYSTEM APPLICATIONS – A PERSPECTIVE
Wind & Transmission: The Clean Energy Superhighway
National Nanotechnology Infrastructure Network
Overview of the emerging nanotechnology field
Nanotechnology Prepared by: ASHWINI GHORPADE.
C.6 Liquid Crystals The liquid crystal state Liquid Crystal Examples
Presentation transcript:

Mechanical and Industrial Engineering University of Massachusetts Amherst, MA, USA Nano-Impact Jonathan P. Rothstein and Mark Tuominen

Making a Better Bulletproof Vest A group of researchers at Univ. Del. have impregnated Kevlar vests with a nanoparticle colloidal suspension resulting in a dramatic improvement in projectile impact. The addition of a very small amount of fluid increased performance equivalent to doubling the number of Kevlar sheets while not changing flexibility of fabric. Why? Lee, Wetzel and Wagner J. Material Science (2003) Kevlar Kevlar & Nanoparticle Suspension

Making a Better Bulletproof Vest A group of researchers at Univ. Del. have impregnated Kevlar vests with a nanoparticle colloidal suspension resulting in a dramatic improvement in projectile impact. The addition of a very small amount of fluid increased performance equivalent to doubling the number of Kevlar sheets while not changing flexibility of fabric. Why? Kevlar Kevlar & Nanoparticle Suspension

Nanoparticle Suspensions The nanoparticle (d = 13nm) suspensions are shear thickening – the faster you shear or stretch them more viscous (thick) they become. The dramatic increase in viscosity dissipates energy as the Kevlar fibers are pulled out by the impact of the bullets. Increasing Stretch Rate

Why Size Matters For large particles the fluid remains Newtonian like air or water below 30wt% Above 30% interactions between and collisions of particles result shear thickening and elastic effects – particles interact to form large aggregate structures For nanoparticles, the effect of nanoparticle addition can be observed at concentrations closer to 1wt% - why? Surface area increases with reduced particle size resulting in enhanced interparticle interactions At same volume fraction smaller particles are packed closer together – electrostatic interactions are stronger and diffusion is faster so they interact more frequently. 1 m Particles 100nm Particles 10nm Particles

Copying Nature – Biomimetic Superhydrophobic Surfaces The leaves of the lotus plant are superhydrophobic – water beads up on the surface of the plant and moves freely with almost no resistance making the leaves self-cleaning. The surface of the lotus leaf has 10 m sized bumps which are coated by 1nm sized waxy crystals which make the surface extremely hydrophobic - repel water. The water does not wet the entire surface of the leaf, but only the tops of the large scale roughness. Synthetic superhydrophobic surfaces have designed to produce stain-resistant clothing and coatings for buildings and windows to make them self-cleaning. Water Drops on a Lotus Leaf

Drop Motion on a Superhydrophobic Surfaces Droplets dont wet, but roll down superhydrophobic surfaces. Water-based stains dont adsorb. Dirt is picked up by rolling drop as it moves. Superhydrophobic Surface Dirt

Using Superhydrophobic Surfaces to Reduce Drag We are currently using superhydrophobic surfaces to develop a passive, inexpensive technique that can generate drag reduction in both laminar and turbulent flows. This technology could have a significant impact on applications from microfluidics and nanofluidics to submarines and surface ships. How does it work? The water touches only the tops of the post and a shear-free air-water interfaces is supported – effectively reducing the surface area. Currently capable of reducing drag by over 70% in both laminar and turbulent flows! w d 15μm PDMS Carbon Nanotubes

Can These Surfaces Have a Real Impact? 60μm Current Energy Resources – Fossil Fuels Increasing scarcity Increasing cost Dangerous to maintain security Ocean-going vessels accounted for 72% of all U.S. imports in 2006 Technology could be employed to make ships more efficient or faster Friction drag accounts for 90% of total drag experienced by a slow moving vessel A 25% reduction in friction drag on a typical Suezmax Crude Carrier could… Save $5,500 USD / day in #6 fuel oil Prevent 43 metric tons of CO 2 from entering the atmosphere each day The GENMAR GEORGE T (Japan Universal Shipbuilding, Tsu shipyard)

Why Size Matters To support larger and larger pressures and pressure drops, the spacing of the roughness on the ultrahydrophobic surfaces must be reduced into the nanoscale. Currently developing processing techniques for large area nanofabrication of superhydrophobic surfaces with precise patterns of surface roughness. Roll-to-roll nano-imprint lithography – a cutting edge tool. Supply Drive Module Coating Module Imprinting Module Receive Drive Module

Why Roll-to-Roll Nanoimprint Lithography Roll-to-roll technology will enable fabrication of nanostructured materials and devices by a simple, rapid, high volume, cost-effective platform. Current cost of nanofabrication is $25,000/m 2 This technology capable of pushing it to $25/m 2 Will help address many of the challenges facing society. Supply Drive Module Coating Module

Challenges facing society Water Energy Health Sustainable development Environment Knowledge Economy

Global Grand Challenges 2008 NAE Grand Challenges

nano.gov

Top Program Areas of the NNI for Fundamental nanoscale phenomena and processes 2. Nanomaterials 3. Nanoscale devices and systems 4. Instrumentation research, metrology, and standards 5. Nanomanufacturing 6. Major research facilities and instrumentation 7. Environment, health and safety 8. Education and societal dimensions 484M 342M 402M 77M 101M 203M 117M 35M

Important Strides in Nano Environmental, Health and Safety NIOSH: "Approaches to Safe Nanotechnology" -Emphasizing effective control banding -Now an ISO standard NIH: Nano Health Enterprise Initiative DuPont/EDF: Nano Risk Framework ACS: Lab Safety Guidelines For Handling Nanomaterials Lockheed-Martin: Enterprise-wide Procedure for Environmental, Safety and Health Management of Nanomaterials

NSF Centers Dedicated to Nano EHS University of California Center for the Environmental Implications of NanoTechnology Duke Center for the Environmental Implications of NanoTechnology (CEINT) Rice University Center for Biological and Environmental Nanotechnology Components within other centers Other Federal EHS Activities National Institute for Environmental Health Science NIH Nanomaterials Characterization Laboratory NIOSH EPA FDA Industrial EHS Testing

Standards: ISO TC 229 Terminology and Nomenclature Measurement Safety Materials Specifications

Nanomanufacturing - the essential link between laboratory innovations and nanotechnology products.

Nanomanufacturing Processes must work at a commercially relevant scale Cost is a key factor Must be reproducible and reliable EHS under control Nanomanufacturing includes top-down and bottom-up techniques, and integration of both Must form part of a value chain

CNT-based transparent conducting electrodes - replaces indium tin oxide for displays and solar cells Synthetic processes of monodisperse nanoparticles with designer surface ligands - impacts many applications Block copolymer nanoscale patterning - utilization of molecular self-assembly for magnetic data storage and other applications Self-alignment processes - utilizes natural interactions for nanoscale integration; enabling roll-to-roll processing Past 10 years: Major Accomplishments in Synthesis, Assembly and Processing (Nanomanufacturing)

Scalable processes for carbon nanotubes and graphene - impacts many applications Plasmonic lithography - produce smaller critical dimensions by beating far-field diffraction limitations Use of bulk metallic glass materials for nanoscale molding - masters for nanoimprint lithography; curved surfaces Past 10 years: Major Accomplishments in Synthesis, Assembly and Processing (Nanomanufacturing) -- cont.

NanoMFG Processes Materials Metrology Workforce EHS Information Tools Education Standards Economic Nanomanufacturing Enterprise (Science-based) To create nanomanufacturing excellence, we must attend to all parts of the value chain.

Nanomanufacturing Stakeholders Academic Centers Academic Centers Industry Government Labs & Agencies Government Labs & Agencies

Four NSF Nanomanufacturing Research Centers –Center for Hierarchical Manufacturing (CHM) - UMass Amherst/UPR/MHC/Binghamton –Center for High-Rate Nanomanufacturing (CHN) - Northeastern/UMass Lowell/UNH –Center for Scalable and Integrated Nanomanufacturing (SINAM) - UC Berkeley/UCLA/UCSD/Stanford/UNC Charlotte –Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems (Nano-CEMMS) - UIUC/CalTech/NC A&T

An open access network for the advancement of nanomanufacturing R&D and education –Cooperative activities (real-space) –Informatics (cyber-space) Mission: A catalyst -- to support and develop communities of practice in nanomanufacturing.

nanomanufacturing.org

Nanoinformatics Nanotechnology meets Information Technology The development of effective mechanisms for collecting, sharing, visualizing, modeling and analyzing data and information relevant to the nanoscale science and engineering community. The utilization of information and communication technologies that help to launch and support efficient communities of practice.

The Medici Effect at Work: Interdisciplinary Teamwork in Nanotechnology Physics Chemistry Biology Materials Science Polymer Science Electrical Engineering Chemical Engineering Mechanical Engineering Medicine And others Electronics Materials Health/Biotech Chemical Environmental Energy Food Aerospace Automotive Security Forest products

Nano-informatics: Some Major Nanotech Research Communities Nanomanufacturing Environmental, Health & Safety Fundamental Research Societal Impact Modeling & Simulation National Infrastructure Health & Life Sciences Metrology Commercialization Education Energy Materials

"The Cathedral and the Bazaar" (Eric S. Raymond) The open source movement: The power of peer production by a large group with diverse agendas, expertise and perspectives Yet an appropriate degree of editorial control (a filter) by an expert body of authority ensures quality control

"Connect and Develop" (P&G) Open Innovation via a distributed network Printed Pringles and other examples