Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 12 Cross-Layer.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
3.6 Support Vector Machines
EE384y: Packet Switch Architectures
1
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (Parallel Algorithms) Robin Pomplun.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 7 Reconfiguration,
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 17 Auction-based.
1 Chapter 3 Digital Communication Fundamentals for Cognitive Radio Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski,
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 11 Information.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 10 User.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 5 Spectrum.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 6 Agile.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 3 CPUs.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
1 Multi-Channel Wireless Networks: Capacity and Protocols Nitin H. Vaidya University of Illinois at Urbana-Champaign Joint work with Pradeep Kyasanur Chandrakanth.
and 6.855J Cycle Canceling Algorithm. 2 A minimum cost flow problem , $4 20, $1 20, $2 25, $2 25, $5 20, $6 30, $
Thursday, April 11 Some more applications of integer
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
Multipath Routing for Video Delivery over Bandwidth-Limited Networks S.-H. Gary Chan Jiancong Chen Department of Computer Science Hong Kong University.
1 Outline relationship among topics secrets LP with upper bounds by Simplex method basic feasible solution (BFS) by Simplex method for bounded variables.
Robust Window-based Multi-node Technology- Independent Logic Minimization Jeff L.Cobb Kanupriya Gulati Sunil P. Khatri Texas Instruments, Inc. Dept. of.
Solve Multi-step Equations
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
1 Column Generation. 2 Outline trim loss problem different formulations column generation the trim loss problem master problem and subproblem in column.
PP Test Review Sections 6-1 to 6-6
Shadow Prices vs. Vickrey Prices in Multipath Routing Parthasarathy Ramanujam, Zongpeng Li and Lisa Higham University of Calgary Presented by Ajay Gopinathan.
The Weighted Proportional Resource Allocation Milan Vojnović Microsoft Research Joint work with Thành Nguyen Microsoft Research Asia, Beijing, April, 2011.
EU market situation for eggs and poultry Management Committee 20 October 2011.
An Application of Linear Programming Lesson 12 The Transportation Model.
1 COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED. On the Capacity of Wireless CSMA/CA Multihop Networks Rafael Laufer and Leonard Kleinrock Bell.
Simultaneous Routing and Resource Allocation in Wireless Networks Mikael Johansson Signals, Sensors and Systems, KTH Joint work with Lin Xiao and Stephen.
Outline Minimum Spanning Tree Maximal Flow Algorithm LP formulation 1.
Developing a Project Plan CHAPTER SIX Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
VOORBLAD.
Name Convolutional codes Tomashevich Victor. Name- 2 - Introduction Convolutional codes map information to code bits sequentially by convolving a sequence.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
Adding Up In Chunks.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Artificial Intelligence
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
H to shape fully developed personality to shape fully developed personality for successful application in life for successful.
Analyzing Genes and Genomes
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Mani Srivastava UCLA - EE Department Room: 6731-H Boelter Hall Tel: WWW: Copyright 2003.
Immunobiology: The Immune System in Health & Disease Sixth Edition
Energy Generation in Mitochondria and Chlorplasts
Chapter 5 The Mathematics of Diversification
Delay Analysis and Optimality of Scheduling Policies for Multihop Wireless Networks Gagan Raj Gupta Post-Doctoral Research Associate with the Parallel.
1 Chapter 6 Reformulation-Linearization Technique and Applications.
1 Chapter 5 Branch-and-bound Framework and Its Applications.
Presentation transcript:

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 12 Cross-Layer Optimization for Multi- Hop Cognitive Radio Networks

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 2 Outline CR network (CRN) properties Mathematical models at multiple layers Case study

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Traditional Radio vs CR Traditional radio Hardware-based, not flexible Operates on a given frequency band, inefficient use of spectrum CR - A revolution in radio technology Software-based, most functions are programmable Can sense available spectrum Can switch to and operate on different frequency bands 3

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 4 CRN Properties In CRN, the set of available bands may be different at different node Two nodes can communicate only if them have common available band Each band may have a different bandwidth Each node can use multiple bands at the same time

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Opportunity and Challenge CRN properties provide opportunity to achieve better performance Increase spectrum efficiency, larger throughput … CRN properties also bring unique challenge on how to fully exploit CRN capability Previous approaches assume homogeneous band setting, cannot be applied to CRN 5

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Our Approach Build mathematical models for multiple layers Also build cross-layer constraint to fully exploit CRN capability Formulate an optimization problem Apply optimization techniques to solve the problem 6

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Scheduling Constraints We perform Scheduling on bands Recall that each node has multiple available bands A node i cannot transmit and receive on the same band 7

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Scheduling Constraints (contd) A node i cannot transmit to or receive from multiple nodes on the same band and These scheduling constraints can be combined as 8

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Power Control Constraint Power control can be done on Q levels between 0 and P max Power level Transmission power is The cross-layer relationship between scheduling variable and power level is 9

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) SINR Formula SINR at the receiver Let. We have 10

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Physical Interference Model A transmission is successful SINR exceeds certain threshold α The relationship between SINR and scheduling variable is 11

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Routing Constraints For maximum flexibility (and optimality), we allow flow splitting (multi-path routing) Flow balance constraints for a session l If node i is source, then If node i is destination, then For all other cases, we have 12

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Link Capacity Constraint The cross-layer relationship between flow rate and SINR Aggregate flow on a link cannot exceed its capacity 13

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 14 Outline CR network (CRN) properties Mathematical models at multiple layers Case study

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Throughput Maximization Problem Consider a multi-hop CRN Each session has a minimum rate requirement r(l) Multi-hop multi-path routing for each session Aim to maximize a rate scaling factor K for all sessions 15

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Problem Formulation Based on our models at multiple layers, we have 16

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Problem Formulation (contd) Mixed integer non-linear program 17

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Our Approach Branch-and-Bound A form of the divide-and-conquer technique Divide the original problem into sub-problems Find upper and lower bounds for each sub-problem Upper bound obtained via convex hull relaxation Lower bound obtained via a local search algorithm We then have the upper and lower bounds for the original problem Once these two bounds are close to each other, we are done Otherwise, we further divide and obtain more sub- problems The obtained solution is near-optimal 18

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Branch-and-Bound: An Example 19

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Branch-and-Bound (contd) 20

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Branch-and-Bound (contd) 21

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Branch-and-Bound Divide the original problem into sub-problems Find upper and lower bounds for each sub- problem Upper bound obtained via convex hull relaxation Lower bound obtained via a local search algorithm We then have the upper and lower bounds for the original problem Once these two bounds are close to each other, we are done Otherwise, we further divide and obtain more sub- problems 22

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Linear Relaxation for Product Terms Reformulation Linearization Technique (RLT) For the non-linear term of, suppose We have That is, Other three linear relaxation constraints are 23

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Linear Relaxation for log Terms Convex hull relaxation 24

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Relaxed Problem Formulation -- LP 25 Can be solved in polynomial time Provides an upper bound

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Branch-and-Bound Divide the original problem into sub-problems Find upper and lower bounds for each sub- problem Upper bound obtained via convex hull relaxation Lower bound obtained via a local search algorithm We then have the upper and lower bounds for the original problem Once these two bounds are close to each other, we are done Otherwise, we further divide and obtain more sub- problems 26

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Obtain Lower Bound In the solution to the upper bound, both x and q variables may not be integers Infeasible to the original problem Design a local search algorithm to find a feasible solution This feasible solution provides a lower bound 27

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Local Search Algorithm Begin with the minimum transmission power at each node Iteratively increase the bottleneck links capacity Compute each links capacity Identify the bottleneck link for K Try to increase its transmission power on some band -- Ensure all constraints hold Algorithm terminates when the transmission power cannot be increased 28

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Branch-and-Bound Divide the original problem into sub-problems Find upper and lower bounds for each sub- problem Upper bound obtained via convex hull relaxation Lower bound obtained via a local search algorithm We then have the upper and lower bounds for the original problem Once these two bounds are close to each other, we are done Otherwise, we further divide and obtain more sub- problems 29

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Obtain New Problems Choose the problem with the largest upper bound Divide this problem into two problems Select a partition variable Divide its value interval into two intervals Each new problem may have tighter bounds 30

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Select Partition Variable Selection of partition variable will affect the bounds to new problems To obtain tighter bounds, we first select an x variable Scheduling variables are more significant Among x variables, we choose the one with the maximum relaxation error We then select a q variable based on relaxation error 31

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Numerical Results Network setting 20, 30, or 50 nodes in a 50 x 50 area 5 or 10 communication sessions with minimum rate requirement in [1, 10] 10 bands with the same bandwidth of 50 A subset of these 10 bands is available at each node 10 power levels Aim to find 90% optimal solution 32

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) A 20-Node Network 33

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) A 20-Node Network Topology 34

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) The 20-Node Network: Transmission Powers One band can be re-used at multiple nodes Band 1 at nodes 7 and 16 35

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) The 20-Node Network: Flow Rates All sessions use multi-hop routing Multi-path routing is used for session 1 36

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Routing Topology for A 30-Node Network 37

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) Routing Topology for A 50-Node Network 38

Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 39 Chapter 12 Summary Build mathematical models for each layer Exploit properties of multi-hop CR networks Case study: Throughput maximization problem Apply our models to formulate an optimization problem Obtain near-optimal solution by branch-and- bound