ATK 方法的扩展及其应用 王雪峰 苏州大学物理系 2009.11.28 ZJNU-JinHua.

Slides:



Advertisements
Similar presentations
Computational Nanoelectronics A. A. Farajian Institute for Materials Research, Tohoku University, Sendai , Japan In collaboration with K. Esfarjani,
Advertisements

Atomistic Simulation of Carbon Nanotube FETs Using Non-Equilibrium Green’s Function Formalism Jing Guo 1, Supriyo Datta 2, M P Anantram 3, and Mark Lundstrom.
Thermoelectric and thermal rectification properties of quantum dot junctions David M T Kuo 1 and Yia-Chung Chang 2 1:Department of Electrical Engineering,
Electrical transport and charge detection in nanoscale phosphorus-in-silicon islands Fay Hudson, Andrew Ferguson, Victor Chan, Changyi Yang, David Jamieson,
Control of transport through Fano resonances in molecular wires T. A. Papadopoulos, I. M. Grace and C. J. Lambert Department of Physics, Lancaster University,
Budapest University of Technology and Economics Department of Electron Devices Microelectronics, BSc course Basic semiconductor physics.
Nanostructures Research Group Center for Solid State Electronics Research Quantum corrected full-band Cellular Monte Carlo simulation of AlGaN/GaN HEMTs.
Huckel I-V 3.0: A Self-consistent Model for Molecular Transport with Improved Electrostatics Ferdows Zahid School of Electrical and Computer Engineering.
International Workshop of Computational Electronics Purdue University, 26 th of October 2004 Treatment of Point Defects in Nanowire MOSFETs Using the Nonequilibrium.
Electrical Techniques MSN506 notes. Electrical characterization Electronic properties of materials are closely related to the structure of the material.
Title Transport Through Single Molecules: Resonant Transmission, Rectification, Spin Filtering, and Tunneling Magnetoresistance Harold U. Baranger, Duke.
Towards parameter-free device modeling
Transport Calculations with TranSIESTA
1 Nonequilibrium Green’s Function Approach to Thermal Transport in Nanostructures Jian-Sheng Wang National University of Singapore.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP Quantum Transport in Ultra-scaled.
Thermal Enhancement of Interference Effects in Quantum Point Contacts Adel Abbout, Gabriel Lemarié and Jean-Louis Pichard Phys. Rev. Lett. 106,
Theory of vibrationally inelastic electron transport through molecular bridges Martin Čížek Charles University Prague Michael Thoss, Wolfgang Domcke Technical.
Quantum Dots Arindam Ghosh. Organization of large number of nanostructures – scalability Utilize natural forces Organic, inorganic and biological systems.
Lecture 19 OUTLINE The MOSFET: Structure and operation
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP First Time User Guide to OMEN Nanowire**
Efficient solution algorithm of non-equilibrium Green’s functions in atomistic tight binding representation Yu He, Lang Zeng, Tillmann Kubis, Michael Povolotskyi,
Мэдээллийн Технологийн Сургууль Монгол Улсын Их Сургууль Some features of creating GRID structure for simulation of nanotransistors Bolormaa Dalanbayar,
ITR/AP: Simulations of Open Quantum Systems with Application to Molecular Electronics Christopher Roland and Celeste Sagui Department of Physics, NC State.
Picosecond needs for phonon dynamics in nanoscience / energy science Yuelin Li, X-ray Science Division, Argonne National Laboratory.
Thermoelectricity of Semiconductors
NEGF Method: Capabilities and Challenges
Precision control of single molecule electrical junctions Iain Grace & Colin Lambert.
Caltech collaboration for DNA-organized Nanoelectronics The Caltech DNA- nanoelectronics team.
December 2, 2011Ph.D. Thesis Presentation First principles simulations of nanoelectronic devices Jesse Maassen (Supervisor : Prof. Hong Guo) Department.
On Measuring Coherence in Coupled Dangling-Bond Pair Dynamics Zahra Shaterzadeh-Yazdi International Iran Conference on Quantum Information September.
Conductance of Single Molecular Junctions
Yibin Xu National Institute for Materials Science, Japan Thermal Conductivity of Amorphous Si and Ge Thin Films.
Laboratoire Matériaux et Microélectronique de Provence UMR CNRS Marseille/Toulon (France) - M. Bescond, J-L. Autran, M. Lannoo 4 th.
The g DFTB method applied to transport in Si nanowires and carbon nanotubes 1 Dip. di Ingegneria Elettronica, Universita` di Roma Tor Vergata 2 Computational.
Stefano Sanvito Computational Spintronics Group Physics Department, Trinity College Dublin CCTN’05, Göteborg 2005.
Modeling, Characterization and Design of Wide Bandgap MOSFETs for High Temperature and Power Applications UMCP: Neil Goldsman Gary Pennington(Ph.D) Stephen.
TEMPLATE DESIGN © SIMULATION OF RESONANT TUNNELING DIODES FOR NANOELECTRONIC APPLICATIONS Palla Pavankumar, Perumalla.
Feb 23, 2010, Tsukuba-Edinburgh Computational Science Workshop, Edinburgh Large-Scale Density-Functional calculations for nano-meter size Si materials.
Simulation of transport in silicon devices at atomistic level Introduction Properties of homogeneous silicon Properties of pn junction Properties of MOSFET.
Nonequilibrium Green’s Function and Quantum Master Equation Approach to Transport Wang Jian-Sheng 1.
1 Heat Conduction in One- Dimensional Systems: molecular dynamics and mode-coupling theory Jian-Sheng Wang National University of Singapore.
1 BULK Si (100) VALENCE BAND STRUCTURE UNDER STRAIN Sagar Suthram Computational Nanoelectronics Class Project
ECE 4339 L. Trombetta ECE 4339: Physical Principles of Solid State Devices Len Trombetta Summer 2007 Chapters 16-17: MOS Introduction and MOSFET Basics.
Conduction and Transmittance in Molecular Devices A. Prociuk, Y. Chen, M. Shlomi, and B. D. Dunietz GF based Landauer Formalism 2,3 Computing lead GF 4,5.
UPoN Lyon 2008 G. Albareda 1 G.Albareda, D.Jimenez and X.Oriols Universitat Autònoma de Barcelona - Spain E.mail: Can analog and.
Influence of carrier mobility and interface trap states on the transfer characteristics of organic thin film transistors. INFM A. Bolognesi, A. Di Carlo.
U Tor Vergata Charge transport in molecular devices Aldo Di Carlo, A. Pecchia, L. Latessa, M.Ghorghe* Dept. Electronic Eng. University of Rome “Tor Vergata”,
Development of an analytical mobility model for the simulation of ultra thin SOI MOSFETs. M.Alessandrini, *D.Esseni, C.Fiegna Department of Engineering.
APS -- March Meeting 2011 Graphene nanoelectronics from ab initio theory Jesse Maassen, Wei Ji and Hong Guo Department of Physics, McGill University, Montreal,
IEE5328 Nanodevice Transport Theory
Electronic transport properties of nano-scale Si films: an ab initio study Jesse Maassen, Youqi Ke, Ferdows Zahid and Hong Guo Department of Physics, McGill.
Organization Introduction Simulation Approach Results and Discussion
ME 381R Fall 2003 Micro-Nano Scale Thermal-Fluid Science and Technology Lecture 11: Thermal Property Measurement Techniques For Thin Films and Nanostructures.
1 of xx Coulomb-Blockade Oscillations in Semiconductor Nanostructures (Part I & II) PHYS 503: Physics Seminar Fall 2008 Deepak Rajput Graduate Research.
F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band.
Norhayati Soin 06 KEEE 4426 WEEK 3/2 20/01/2006 KEEE 4426 VLSI WEEK 4 CHAPTER 1 MOS Capacitors (PART 3) CHAPTER MOS Capacitance.
Mesoscopic physics and nanotechnology
1 ME 381R Lecture Semiconductor Devices and Thermal Issues Dr. Li Shi Department of Mechanical Engineering The University of Texas at Austin Austin,
Nikolai Kopnin Theory Group Dynamics of Superfluid 3 He and Superconductors.
Network for Computational Nanotechnology (NCN) Gerhard Klimeck Berkeley, Univ. of Florida, Univ.of Illinois, Norfolk State, Northwestern, Purdue, Stanford,
Nonequilibrium Green’s Function Method for Thermal Transport Jian-Sheng Wang.
EE130/230A Discussion 10 Peng Zheng.
Two-Dimensional Electron Gases at the Surface of Potassium Tantalate Ben Pound Electron Physics Group SURF Colloquium, August 8, 2014.
Trap Engineering for device design and reliability modeling in memory/logic application 1/ 년 02 월 xx 일 School of EE, Seoul National University 대표.
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 1.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) Effect of oxide charges
Contact Resistance Modeling and Analysis of HEMT Devices S. H. Park, H
Contact Resistance Modeling in HEMT Devices
Lecture 7 DFT Applications
Coulomb Blockade and Single Electron Transistor
Presentation transcript:

ATK 方法的扩展及其应用 王雪峰 苏州大学物理系 ZJNU-JinHua

Introduction Inelastic scattering Gate effect: electrostatic potential profile Optimization of tridiagonal matrix inverter Thermoelectric effect Improvement of functionals Summary Outline ZJNU-JinHua

SIESTA TranSIESTA KS Hamiltonian Matrix Nonequilibrium Green’s Function TranSIESTA-C ATK+VNL Other transport packages: Smeagol, OpenMX,WanT,PWSCF ZJNU-JinHua Jose M. Soler, et al., J. Phys.: CM 14, 2745 (2002); J. Taylor, H. Guo and J. Wang, Phys. Rev. B 63, (2001); M. Brandbyge, et al., Phys. Rev. B 65, (2002);

The system T 1,   T 2,   vibration ZJNU-JinHua

Band-diagram of the system in equilibrium

Effect of gate voltage Not just a shift in reality!

Effect of source-drain voltage

Escape time, contact coupling

Current N E Occupation number

Broadening ZJNU-JinHua N is then obtained

More general expression

Potential profile capacitance

Real system: numbers to matrices Ref. S. Datta, “Quantum Transport: Atom to Transistor”, Cambridge University Press (2005) ZJNU-JinHua

Tight-binding model

Inflow and outflow

Coherent transport for one level model

Electronic structures of two electrodes and equivalent bulk system: self-consistent Kohn-Sham potentials and Hamiltonian matrices  Kohn-Sham Hamiltonian:  Poisson equation:  Hamiltonian Matrix H : The Green’s function of open system, G : Formalism M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, PRB 65, (2002). K. Stokbro, J. Taylor, M. Brandbyge, and P. ordejon, Ann. NY. Acad. Sci. 1006, 212 (2003) ZJNU-JinHua

Density matrix:  In equilibrium:  In nonequilibrium:  The electron density: The current through the contact:

Calculate Kohn-Sham Hamiltonian Initially define the system geometry Bulk calculations of V eff for the left and right electrodes Calculate Current Self-consistent Loop ZJNU-JinHua

Phonon effect in the lowest order D G

Inelastic scattering p.287 p.336

Elastic scattering for one level model

Inelastic scattering for one level model D G

A7-atom gold wire with L=29.20 Å is coupled to semi-infinite electrodes. The vibrational region is taken to include the atoms in the pyramidal bases. The device region (describing the e-ph couplings) includes also the outermost surface layers. T. Frederiksen, M. Paulsson, M. Brandbyge, A. P. Jauho, Phys. Rev. B 75, (2007) ZJNU-JinHua

The measured (noisy black curves) are for different strain. The calculated (smooth colored lines) are for different damping. T=4.2K

Gate effect: Si MOSFET devices Equivalent capacitive circuit VgVg MOSFETs are the most important building blocks Si nanostructures are still the fundamental units: Si cluster, nanowire, nanoslab, and so on ZJNU-JinHua

Top-down technologies in traditional semiconductor industry -- Microelectronics mm 100nm10nmnm0.1nm Si lattice CPU wire ITRS Intl. Tech. Roadmap Semi. Bottom-up technologies Molecular electronics, Spintronics, Quantum computation mm 0.1nm nm 10 nm100nm DNA Si lattice H2OH2O Quantum dot nanotube, nanowire ZJNU-JinHua

S D (a) (b) Atomistic model systems Geometrically optimized Si-H bond length and Si-SiO2 interfaces ZJNU-JinHua

ATK Two-Probe method Multigrid Poisson solver Norm-conserving pseudopotential of Troullier-Martins scheme LDA with Perdew-Zunger parameterization Standard SIESTA SZP basis set Mesh cutoff 4348 eV or Å Calculation Method ZJNU-JinHua L. N. Zhao, et al., J. Comp. Electronics 7, 500 (2008); X. F. Wang, et al., Int. J. Nanoscience 8, 113 (2009).

Si-slab based MOSFET capacitor Result: ZJNU-JinHua

Charge and electrostatic potential distribution X V  X ZJNU-JinHua

Total induced charge and surface potential versus gate voltage Q VsVs VsVs VgVg VgVg VgVg Q ZJNU-JinHua

Transmission spectrum under gate voltage T  T  ZJNU-JinHua

Thermoelectric effects

thermoelectric devices Thermal conductance ZJNU-JinHua

Charge current and heat current Here we do not include the phonon effect ZJNU-JinHua

silicon nanowires A. I. Hochbaum et al., Nature 451, 163 (2008). silicon nanowires array Akram I. Boukai, ibid. 451, 168 (2008). ZT=S 2  T/ 

ATK method is under development Optimize algorithm: faster, better accuracy, larger system Inelastic scattering Multi-terminal systems: transistor Temperature bias: thermoelectric effect Better density functional Summary ZJNU-JinHua