Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 47: Animal Development.

Slides:



Advertisements
Similar presentations
Haploid vs Diploid Review
Advertisements

Today’s Objective: 2.1 The student will list the germ layers and their derivatives The student will be able to sequence the stages of animal development.
Animal Development.
GROWTH AND DEVELOPMENT IN ANIMALS
Ch. 47.
Embryonic Development
Principles of Biology By Frank H. Osborne, Ph. D. Development.
Chapter 47: Animal Development
Ch. 46/47 Warm-Up (Ch. 46) How do oogenesis and spermatogenesis differ? (Ch. 46) How do these hormones affect the menstrual cycle? LH FSH Estrogen Progesterone.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Animal Reproduction (continued from 11/24/08)
The most complex problem
Ch 47: Animal Development
Animal Development Emily Huang, Erin McGrath, Michelle Xu.
Chapter 47 Animal Development. Embryonic development/fertilization u Preformation~ until 18th century; miniature infant in sperm or egg u At fertilization/conception:
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint TextEdit Art Slides for Biology, Seventh Edition Neil Campbell and.
Embryology Cellular and Molecular Mechanisms Involved in Fertilization and Development.
Animal Development Process of development from a single cell to an entire multi-cellular organism.
Animal Development Chapter 47. Development Preformation – Idea that egg contains a miniature adult that grows only in size during devel. Preformation.
Animal Development. Outline I.Early Stages of Embryonic Development A. Intro B. Fertilization C. Cleavage D. Gastrulation II.Morphogenesis.
Chapter 47 Animal Development Ms. Klinkhachorn Saturday April 30, 2011 AP Biology.
Developmental Stages in an Amphibian. LE 21-4 Animal development Zygote (fertilized egg) Eight cellsBlastula (cross section) Gastrula (cross section)
Fertilization Fertilization activates the egg
CHAPTER 27 Reproduction and Embryonic Development
U Chapter 47 Animal Development. Embryonic development/fertilization u Preformation: until 18th century; miniature infant in sperm or egg u Epigenesis:
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Animal Development By Natasha Guenther, Brea Altoya, and Bianca (I can’t spell her last name so I’m leaving it out)
Animal Development Chapter 47. WHAT’S NEXT? Once copulation ends…
D EVELOPMENTAL B IOLOGY Fertilization to Gastulation.
Chapter 47Animal Development Fertilization.
What is an animal?.
Animal Development Chapter 47. The Miracle of Life Human embryo.
Fertilization Fertilization activates the egg Activation of the egg triggers embryonic development.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Cleavage, Gastrulation
Chap 47 Animal development
Development AxolotlChicken. Gametogenesis The formation of gametes occurs within the gonads (ovaries and testes.) Spermatogonia and oogonia undergo mitosis.
Chapter 53 Sila and Kharee
Embryonic Development Involves 3 Components: 1. Cell Division- The mitotic increase in the number of cells. 2. Differentiation- The development of specialized.
Ch 47 Fertilization through organogenesis
8-1 CHAPTER 8 Principles of Development. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 8-2 Organizing cells.
Development. Fertilization Chemotaxis Sea Urchin’s eggs have a chemotatic molecule called resact. This molecule is found in the outer jelly coat of.
Lecture Date ________ Chapter 47 –Animal Development.
PRINCIPLES OF EMBRYONIC DEVELOPMENT © 2012 Pearson Education, Inc.
Animal Development [Note: This is the text version of this lecture file. To make the lecture notes downloadable over a slow connection (e.g. modem) the.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Animal Development. The Mystery of Development The main problem of embryology is this: How, in the course of development, does a cell of one type.
Preformation: the egg or sperm contains an embryo that is a preformed miniature adult. Epigenesis: the form of an animal emerges from a relatively formless.
Lecture #20 Date ________ u Chapter 47 ~ Animal Development.
AP Biology Animal Reproduction & Development.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Diversity – Eukarya – Kingdom Animalia Chapter
Chapter 47 Animal Development.
Chapter five Oviparous and Viviparous Embryo development
Chapter 54. Development
Fertilization Fertilization activates the egg
BIO706 Embryology Lecture 6: Animal Development - 1
How did this complex embryo develop from a single fertilized egg?
Ch. 46/47 Warm-Up (Ch. 46) How do oogenesis and spermatogenesis differ? (Ch. 46) How do these hormones affect the menstrual cycle? LH FSH Estrogen Progesterone.
Chapter 47 Animal Development.
Ch. 46/47 Warm-Up (Ch. 46) How do oogenesis and spermatogenesis differ? (Ch. 46) How do these hormones affect the menstrual cycle? LH FSH Estrogen Progesterone.
Animal Development Chapter 47 1 mm Figure 47.1
Animal Development 1 mm Fig. 47-1
Lecture #20 Date ________
Animal Development Chapter 47 ~ Animal Development.
Animal development Alyssa & Karenn.
Development
Animal Development Introduction to animal development
Animal Development Mr. Price AP Biology.
Chapter 47- Animal Development
CHAPTER 47 Animal Development
Presentation transcript:

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 47: Animal Development

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 47.1 A human embryo about six to eight weeks after conception 1 mm

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 47.6 Early events of fertilization in mammals The sperm migrates through the coat of follicle cells and binds to receptor molecules in the zona pellucida of the egg. (Receptor molecules are not shown here.) 1 This binding induces the acrosomal reaction, in which the sperm releases hydrolytic enzymes into the zona pellucida. 2 Breakdown of the zona pellucida by these enzymes allows the sperm to reach the plasma membrane of the egg. Membrane proteins of the sperm bind to receptors on the egg membrane, and the two membranes fuse. 3 The nucleus and other components of the sperm cell enter the egg. 4 Enzymes released during the cortical reaction harden the zona pellucida, which now functions as a block to polyspermy. 5 Sperm nucleus Acrosomal vesicle Egg plasma membrane Zone pellucida Sperm basal body Cortical granules Follicle cell EGG CYTOPLASM

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 47.7 Cleavage in an echinoderm embryo Fertilized egg. Shown here is the zygote shortly before the first cleavage division, surrounded by the fertilization envelope. The nucleus is visible in the center. (a) Four-cell stage. Remnants of the mitotic spindle can be seen between the two cells that have just completed the second cleavage division. (b)Morula. After further cleavage divisions, the embryo is a multicellular ball that is still surrounded by the fertilization envelope. The blastocoel cavity has begun to form. (c) Blastula. A single layer of cells surrounds a large blastocoel cavity. Although not visible here, the fertilization envelope is still present; the embryo will soon hatch from it and begin swimming. (d)

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings SURFACE VIEW CROSS SECTION Animal pole Blastocoel Dorsal lip of blastopore Dorsal lip of blastopore Vegetal pole Blastula Blastocoel shrinking Archenteron Blastocoel remnant Ectoderm Mesoderm Endoderm Gastrula Yolk plug Key Future ectoderm Future mesoderm Future endoderm Gastrulation begins when a small indented crease, the dorsal lip of the blastopore, appears on one side of the blastula. The crease is formed by cells changing shape and pushing inward from the surface (invagination). Additional cells then roll inward over the dorsal lip (involution) and move into the interior, where they will form endoderm and mesoderm. Meanwhile, cells of the animal pole, the future ectoderm, change shape and begin spreading over the outer surface. The blastopore lip grows on both sides of the embryo, as more cells invaginate. When the sides of the lip meet, the blastopore forms a circle that becomes smaller as ectoderm spreads downward over the surface. Internally, continued involution expands the endoderm and mesoderm, and the archenteron begins to form; as a result, the blastocoel becomes smaller Late in gastrulation, the endoderm-lined archenteron has completely replaced the blastocoel and the three germ layers are in place. The circular blastopore surrounds a plug of yolk-filled cells. Figure Gastrulation in a frog embryo

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure Organogenesis in a chick embryo Neural tube Notochord Archenteron Lateral fold Form extraembryonic membranes YOLK Yolk stalk Somite Coelom Endoderm Mesoderm Ectoderm Yolk sac Eye Forebrain Heart Blood vessels Somites Neural tube Early organogenesis. The archenteron forms when lateral folds pinch the embryo away from the yolk. The embryo remains open to the yolk, attached by the yolk stalk, about midway along its length, as shown in this cross section. The notochord, neural tube, and somites subsequently form much as they do in the frog. (a) Late organogenesis. Rudiments of most major organs have already formed in this chick embryo, which is about 56 hours old and about 2–3 mm long (LM). (b)

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure Adult derivatives of the three embryonic germ layers in vertebrates ECTODERMMESODERMENDODERM Epidermis of skin and its derivatives (including sweat glands, hair follicles) Epithelial lining of mouth and rectum Sense receptors in epidermis Cornea and lens of eye Nervous system Adrenal medulla Tooth enamel Epithelium or pineal and pituitary glands Notochord Skeletal system Muscular system Muscular layer of stomach, intestine, etc. Excretory system Circulatory and lymphatic systems Reproductive system (except germ cells) Dermis of skin Lining of body cavity Adrenal cortex Epithelial lining of digestive tract Epithelial lining of respiratory system Lining of urethra, urinary bladder, and reproductive system Liver Pancreas Thymus Thyroid and parathyroid glands