Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter five Oviparous and Viviparous Embryo development

Similar presentations


Presentation on theme: "Chapter five Oviparous and Viviparous Embryo development"— Presentation transcript:

1 Chapter five Oviparous and Viviparous Embryo development
Dr-Mohamed Ibrahim Abdi “Soojeede” Master of HSM at KU

2 A zygote undergoes rapid cell divisions (cleavage) to form a spherical ball of cells: The process of cleavage is the conversion of a single celled egg into a multicellular embryo. The cleavage or cellulation happens through repeated mitotic divisions. After the cleavage has produced over 100 cells, the embryo is called a blastula. The blastula is usually a spherical layer of cells (the blastoderm) surrounding a fluid-filled or yolk-filled cavity (the blastocoel). Mammals at this stage form a structure called the blastocyst, characterized by an inner cell mass that is distinct from the surrounding blastula. During cleavage, the cells divide without an increase in mass; that is, one large single-celled zygote divides into multiple smaller cells. Each cell within the blastula is called a blastomere.

3 Cleavage can take place in two ways: holoblastic (total) cleavage or meroblastic (partial) cleavage. The type of cleavage depends on the amount of yolk in the eggs. In placental mammals (including humans) where nourishment is provided by the mother's body, so the eggs have a very small amount of yolk and undergo holoblastic cleavage. Other species, such as birds, with a lot of yolk in the egg to nourish the embryo during development, undergo meroblastic cleavage.

4 In mammals, the blastula forms the blastocyst in the next stage of development. Here the cells in the blastula arrange themselves in two layers: the inner cell mass and an outer layer called the trophoblast . The inner cell mass is also known as the embryoblast; this mass of cells will go on to form the embryo. At this stage of development, the inner cell mass consists of embryonic stem cells that will differentiate into the different cell types needed by the organism. The trophoblast will contribute to the placenta and nourish the embryo.

5

6 Gastrulation The typical blastula is a ball of cells. The next stage in embryonic development is the formation of the body plan. The cells in the blastula rearrange themselves spatially to form three layers of cells in a process known as gastrulation. During gastrulation, the blastula folds upon itself to form the three layers of cells. Each of these layers is called a germ layer, which differentiate into different organ systems .

7 The three germs layers are the endoderm, the ectoderm, and the mesoderm.
The ectoderm gives rise to the nervous system and the epidermis; the mesoderm gives rise to the muscle cells and connective tissue in the body; and the endoderm gives rise to columnar cells found in the digestive system and many internal organs.

8

9 Organogenesis Organogenesis is the process by which the three germ tissue layers of the embryo, which are the ectoderm, endoderm, and mesoderm, develop into the internal organs of the organism. Organs form from the germ layers through the differentiation: the process by which a less-specialized cell becomes a more-specialized cell type. This must occur many times as a zygote becomes a fully-developed organism.

10 During differentiation, the embryonic stem cells express specific sets of genes which will determine their ultimate cell type. For example, some cells in the ectoderm will express the genes specific to skin cells. As a result, these cells will differentiate into epidermal cells. Therefore, the process of differentiation is regulated by cellular signaling cascades “series of chemical reactions”. 

11 ECTODERM In vertebrates, one of the primary steps during organogenesis is the formation of the neural system. The ectoderm forms epithelial cells and tissues, as well as neuronal tissues. During the formation of the neural system, special signaling molecules called growth factors signal some cells at the edge of the ectoderm to become epidermis cells. The remaining cells in the center form the neural plate. The neural plate undergoes a series of cell movements where it rolls up and forms a tube called the neural tube. In further development, the neural tube will give rise to the brain and the spinal cord .

12

13 MESODERM The mesoderm that lies on either side of the vertebrate neural tube will develop into the various connective tissues of the animal body . A spatial pattern of gene expression reorganizes the mesoderm into groups of cells called somites, with spaces between them. The somites will further develop into the ribs, lungs, and segmental (spine) muscle. The mesoderm also forms a structure called the notochord, which is rod-shaped and forms the central axis of the animal body.

14

15

16 ENDODERM The endoderm consists, at first, of flattened cells, which subsequently become columnar. It forms the epithelial lining of the whole of the digestive tube (except part of the mouth and pharynx) and the terminal part of the rectum (which is lined by involutions of the ectoderm). It also forms the lining cells of all the glands which open into the digestive tube, including those of the liver and pancreas; the epithelium of the auditory tube and tympanic cavity; the trachea, bronchi, and air cells of the lungs; the urinary bladder and part of the urethra; and the follicle lining of the thyroid gland and thymus. Additionally, the endoderm forms internal organs including the stomach, the colon, the parathyroid, and the intestines.

17


Download ppt "Chapter five Oviparous and Viviparous Embryo development"

Similar presentations


Ads by Google