Chemsheets AS006 (Electron arrangement)

Slides:



Advertisements
Similar presentations
KNOCKHARDY PUBLISHING
Advertisements

Chapter 4B: Balancing Redox Reactions
Synthesis of Alum Lab This synthesis reaction involves a redox reaction and the formation of a complex ion.
AN INTRODUCTION TO TRANSITION METAL COMPLEXES KNOCKHARDY PUBLISHING 2008 SPECIFICATIONS.
Author: J R Reid Qualitative Analysis Qualitative – definitions of solubility Solubility rules Identifying ions Balancing ionic equations Complex ions.
Equations Double Replacement Redox Single Replacement (another redox) CompositionDecomposition Complex Ions Combustion.
Lewis acid = electron pair acceptor (BF 3 )Lewis acid = electron pair acceptor (BF 3 ) Lewis Acids & Bases Copyright © 1999 by Harcourt Brace & Company.
Applied Le Chatelieir's Principle Lesson 4.
Lecture 162/24/06. Quiz 1. A 0.02 M solution of an acid (HA) produces a pH of 5. What is the K a of the acid? 2. If you mix equal amounts of HBr and Na(CH.
Separation and Identification of the Group II Hydroxides in an Unknown
Electrochemistry Use of spontaneous chemical reactions to produce electricity; use of electricity to drive non-spontaneous reactions. Zn(s) + Cu 2+ (aq)
Transition metals Produce compounds with at least one stable oxidation state with a partially filled d-orbital Zn (4s 2 3d 10 )  Zn 2+ (3d 10 ) NOT TM.
Chemical Equilibrium Labs p208.
Lecture 142/23/04 ENVIRONMENTAL CLUB MEETING Today at 5:30 BASEMENT OF HAGAN Bonnie Dixon 2:30 at TSC 255 4:30 at TSC 006.
Balance Redox Equations: Half Reaction concentrate on electrons, balance each ½ rx. separately Ex: Cr 2 O 7 2- (aq) + Cl - (aq)  Cr 3+ (aq) + Cl 2 (g)
Transition metal ions. The elements in the middle ‘d’ block of the periodic table are collectively known as transition elements. Since these elements.
Transition Metals.
OXIDATION- REDUCTION REACTION REVIEW. Oxidation-Reduction (“Redox”) Reactions Most common reaction Process often written as two “half-reactions”—separating.
Chemistry of Coordination Compounds Brown, LeMay Ch 24 AP Chemistry Monta Vista High School To properly view this presentation on the web, use the navigation.
Complex Ions and stuff like that..
Chemsheets AS006 (Electron arrangement)
Transition Elements Conduct a discussion about the importance of transition elements in health, industry and the environment. Make a list of suggestions.
Designed by Samuel Millar VERSION 1. NOTES Black text – CORE KNOWLEDGE – Red text – EXCEPTIONS TO THE PATTERNS Grey text – EXTENSION The colour and formula.
1 Selective Precipitation  a solution containing several different cations can often be separated by addition of a reagent that will form an insoluble.
Title: Lesson 7 Colour Complexes and Catalysts Learning Objectives: Understand the origin of colour in transition metal complexes Understand the uses of.
AN INTRODUCTION TO TRANSITION METAL COMPLEXES KNOCKHARDY PUBLISHING.
Oxidation and Reduction Or, “Do you know where your electrons are?”
Balancing Redox Equations. Electron Transfer Method (Change in Oxidation Number Method) works best for formula equations (no ions present) Steps: 1.Write.
Electrochemistry AP Chemistry. During oxidation-reduction (redox) reactions, the oxidation states of two substances change. oxidation = reduction = loss.
Topic 13 Periodicity HL.
Unless otherwise stated, all images in this file have been reproduced from: Blackman, Bottle, Schmid, Mocerino and Wille,      Chemistry, 2007 (John Wiley)
1. OXIDATION REDUCTION (a) Addition of oxygen Removal of oxygen (b) Removal of hydrogen Addition of hydrogen (c) Loss of electron Gain of electron (d)
AS Chemistry OXIDATION STATES, HALF EQUATIONS and REDOX REACTIONS.
Starter 2. Complete the electronic arrangement of the Co 2 + ion. (1 mark) [Ar] 3. Explain why complex ions with partially filled d sub-levels are usually.
REDOX REACTIONS. OXIDATION NUMBER  The oxidation state of an element in an elemental state is zero. (O 2, Fe, He)  The oxidation state of an element.
Common precipitation reactions with hydroxide ions. When sodium or ammonium hydroxide is added to a solution of metal ions an insoluble metal hydroxide.
Lewis Acids “An acid is an electron pair acceptor,
Acidity or Hydrolysis Reactions.  Definition: A Lewis acid is an electron pair acceptor  Definition: A Lewis base is an electron pair donor  In a complex,
Electrochemistry: Oxidation-Reduction Reactions Zn(s) + Cu +2 (aq)  Zn 2+ (aq) + Cu(s) loss of 2e - gaining to 2e - Zinc is oxidized - it goes up in.
KNOCKHARDY PUBLISHING
Ag+(aq) + 2 H2O(l)  Ag(H2O)2+(aq)
Activity Series ● Used to determine the products of a single replacement reaction – An element higher in the series will replace a lower element in a compound.
KNOCKHARDY PUBLISHING
 Complexes containing bidentate or multidentate ligands are called chelates  Chelation is the process of forming a complex with bidentate or multidentate.
Starter Draw [Cu(EDTA)]2-
Have a think! A mystery compound was analysed. In the flame test, a green result was produced. On testing with sodium hydroxide, a blue precipitate was.
Nature of Salts Green & Damjii – Chapter 8 – Section 18.3 Chang - Chapter 15 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction.
16 Reactions of inorganic compounds in aqueous solution 16.1 Lewis acids and bases 16.2 Ligand substitution reactions 16.3 Summary: Acid-Base and substitution.
Topic 13 - Periodicity. Ionic properties High melting and boiling point Conduct electricity in molten and aqueous states Crystalline solids Soluble.
OCR: Energetics, Equilibrium and Elements. Physical Properties  A transition metal is a d block element that has a partially filled d-subshell of electrons.
Colors and Spectroscopy of Transition Metal Complexes.
 Metal aqua ions can undergo two types of reactions, depending on which bonds in the complex are broken  If the co-ordinate bond between an aqua ligand.
Appearance & state of reductants & oxidants Reduced form Oxidised Form FormulaAppearanceFormulaAppearance Cu Brown solid Cu 2+ Blue ion SO 2.
KNOCKHARDY PUBLISHING
Match the metal to its use...
Net Ionic Equations Double Replacement Redox / Single Replacement
TRANSITION METAL COMPLEXES.
Identifying Cations.
Aqueous metal ion reactions
First-row d-block elements
Oxidation and Reduction
Reactions of cobalt and iron complexes
Lab Le Chatelier's Principle Lesson 4.
Aqueous metal ion reactions
Redox Reactions.
TESTING FOR CATIONS QUALITATIVE ANALYSIS.
Zinc and Scandium are not transition elements!
What can you see in this picture? CO-ORDINATION NUMBER and LIGAND
Presentation transcript:

Chemsheets AS006 (Electron arrangement) 21/04/2017 www.CHEMSHEETS.co.uk INORGANIC COMPLEXES © www.chemsheets.co.uk A2 042 20-Jul-12

Metal aqua ions Substitution by Cl- Hydrolysis Substitution by NH3 Metal aqua ions + OH- Summary 1 Metal aqua ions + NH3 Chelate effect Metal aqua ions + CO32- Redox Summary 2 © www.chemsheets.co.uk A2 042 20-Jul-12

METAL AQUA IONS © www.chemsheets.co.uk A2 042 20-Jul-12

METAL AQUA IONS e.g.[Cu(H2O)6]2+ © www.chemsheets.co.uk A2 042 20-Jul-12

METAL AQUA IONS complex colour [Cu(H2O)6]2+ blue [Co(H2O)6]2+ pink [Fe(H2O)6]2+ green [V(H2O)6]2+ [Cr(H2O)6]3+ violet* [Fe(H2O)6]3+ pale violet** [Al(H2O)6]3+ colourless © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

REACTIONS Hydrolysis O-H bond in H2O ligand breaks Substitution M-ligand bond breaks Redox change in oxidation state of M © www.chemsheets.co.uk A2 042 20-Jul-12

HYDROLYSIS © www.chemsheets.co.uk A2 042 20-Jul-12

HYDROLYSIS OF Mn+(aq)

HYDROLYSIS OF Mn+(aq) M3+ more acidic due to: M3+ smaller and greater charge than M2+ so O-H bond breaks more easily.

HYDROLYSIS OF M2+(aq) [M(H2O)6]2+  [M(H2O)5(OH)]+ + H+ [M(H2O)5(OH)]+  [M(H2O)4(OH)2] + H+ [M(H2O)4(OH)2]  [M(H2O)3(OH)3]- + H+ [M(H2O)3(OH)3]-  [M(H2O)2(OH)4]2- + H+ [M(H2O)2(OH)4]2-  [M(H2O)(OH)5]3- + H+ [M(H2O)(OH)5]3-  [M(OH)6]4- + H+

HYDROLYSIS OF M3+(aq) [M(H2O)6]3+  [M(H2O)5(OH)]2+ + H+ [M(H2O)5(OH)]2+  [M(H2O)4(OH)2]+ + H+ [M(H2O)4(OH)2]+  [M(H2O)3(OH)3] + H+ [M(H2O)3(OH)3]  [M(H2O)2(OH)4]- + H+ [M(H2O)2(OH)4]-  [M(H2O)(OH)5]2- + H+ [M(H2O)(OH)5]2-  [M(OH)6]3- + H+

METAL AQUA IONS + OH-

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + OH- [M(H2O)6]2+ + 2 OH- → [M(H2O)4(OH)2] + 2 H2O M2+(aq) + 2 OH-(aq) → M(OH)2(s) [Cu(H2O)6]2+ + 2 OH- → [Cu(H2O)4(OH)2] + 2 H2O Cu2+(aq) + 2 OH-(aq) → Cu(OH)2(s) © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + OH- [M(H2O)6]2+ + 2 OH- → [M(H2O)4(OH)2] + 2 H2O M2+(aq) + 2 OH-(aq) → M(OH)2(s) [Co(H2O)6]2+ + 2 OH- → [Co(H2O)4(OH)2] + 2 H2O Co2+(aq) + 2 OH-(aq) → Co(OH)2(s) © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + OH- [M(H2O)6]2+ + 2 OH- → [M(H2O)4(OH)2] + 2 H2O M2+(aq) + 2 OH-(aq) → M(OH)2(s) [Fe(H2O)6]2+ + 2 OH- → [Fe(H2O)4(OH)2] + 2 H2O Fe2+(aq) + 2 OH-(aq) → Fe(OH)2(s) © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + OH- [M(H2O)6]3+ + 3 OH- → [M(H2O)3(OH)3] + 3 H2O M3+(aq) + 3 OH-(aq) → M(OH)3(s) [Al(H2O)6]3+ + 3 OH- → [Al(H2O)3(OH)3] + 3 H2O Al3+(aq) + 3 OH-(aq) → Al(OH)3(s) © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + OH- [M(H2O)6]3+ + 3 OH- → [M(H2O)3(OH)3] + 3 H2O M3+(aq) + 3 OH-(aq) → M(OH)3(s) [Fe(H2O)6]3+ + 3 OH- → [Fe(H2O)3(OH)3] + 3 H2O Fe3+(aq) + 3 OH-(aq) → Fe(OH)3(s) © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + OH- [M(H2O)6]3+ + 3 OH- → [M(H2O)3(OH)3] + 3 H2O M3+(aq) + 3 OH-(aq) → M(OH)3(s) [Cr(H2O)6]3+ + 3 OH- → [Cr(H2O)3(OH)3] + 3 H2O Cr3+(aq) + 3 OH-(aq) → Cr(OH)3(s) © www.chemsheets.co.uk A2 042 20-Jul-12

AMPHOTERIC NATURE Amphoteric = reacts with acids and bases XS H+ XS OH- [Cu(H2O)6]2+ [Cu(OH)2] [Fe(H2O)6]2+ [Fe(OH)2] [Co(H2O)6]2+ [Co(OH)2] [Fe(H2O)6]3+ [Fe(OH)3] [Cr(H2O)6]3+ [Cr(OH)3] [Cr(OH)6]3- [Al(H2O)6]3+ [Al(OH)3] [Al(OH)4]- © www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + XS OH- [Cr(H2O)3(OH)3]  [Cr(OH)6]3- + 3 OH- + 3 H2O Cr(OH)3(s) → [Cr(OH)63-](aq) + 3 OH-(aq) [Al(H2O)3(OH)3]  [Al(H2O)2(OH)4]- + OH- + H2O Al(OH)3(s) → [Al(OH)4-](aq) + OH-(aq) © www.chemsheets.co.uk A2 042 20-Jul-12

METAL AQUA IONS + NH3 © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + NH3 [M(H2O)6]2+ + 2 NH3 → [M(H2O)4(OH)2] + 2 NH4+ NH3(aq) + H+(aq) → NH4+(aq) M2+(aq) + 2 OH-(aq) → M(OH)2 [Cu(H2O)6]2+ + 2 NH3 → [Cu(H2O)4(OH)2] + 2 NH4+ NH3(aq) + H+(aq) → NH4+(aq) Cu2+(aq) + 2 OH-(aq) → Cu(OH)2 © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + NH3 [M(H2O)6]2+ + 2 NH3 → [M(H2O)4(OH)2] + 2 NH4+ NH3(aq) + H+(aq) → NH4+(aq) M2+(aq) + 2 OH-(aq) → M(OH)2 [Fe(H2O)6]2+ + 2 NH3 → [Fe(H2O)4(OH)2] + 2 NH4+ NH3(aq) + H+(aq) → NH4+(aq) Fe2+(aq) + 2 OH-(aq) → Fe(OH)2 © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + NH3 [M(H2O)6]2+ + 2 NH3 → [M(H2O)4(OH)2] + 2 NH4+ NH3(aq) + H+(aq) → NH4+(aq) M2+(aq) + 2 OH-(aq) → M(OH)2 [Co(H2O)6]2+ + 2 NH3 → [Co(H2O)4(OH)2] + 2 NH4+ NH3(aq) + H+(aq) → NH4+(aq) Co2+(aq) + 2 OH-(aq) → Co(OH)2 © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + NH3 [M(H2O)6]3+ + 3 NH3 → [M(H2O)3(OH)3] + 3 NH4+ NH3(aq) + H+(aq) → NH4+(aq) M3+(aq) + 3 OH-(aq) → M(OH)3 [Cr(H2O)6]3+ + 3 NH3 → [Cr(H2O)3(OH)3] + 3 NH4+ NH3(aq) + H+(aq) → NH4+(aq) Cr3+(aq) + 3 OH-(aq) → Cr(OH)3 © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + NH3 [M(H2O)6]3+ + 3 NH3 → [M(H2O)3(OH)3] + 3 NH4+ NH3(aq) + H+(aq) → NH4+(aq) M3+(aq) + 3 OH-(aq) → M(OH)3 [Fe(H2O)6]3+ + 3 NH3 → [Fe(H2O)3(OH)3] + 3 NH4+ NH3(aq) + H+(aq) → NH4+(aq) Fe3+(aq) + 3 OH-(aq) → Fe(OH)3 © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + NH3 [M(H2O)6]3+ + 3 NH3 → [M(H2O)3(OH)3] + 3 NH4+ NH3(aq) + H+(aq) → NH4+(aq) M3+(aq) + 3 OH-(aq) → M(OH)3 [Al(H2O)6]3+ + 3 NH3 → [Al(H2O)3(OH)3] + 3 NH4+ NH3(aq) + H+(aq) → NH4+(aq) Al3+(aq) + 3 OH-(aq) → Al(OH)3 © www.chemsheets.co.uk A2 042 20-Jul-12

METAL AQUA IONS + CO32- © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + CO32- [M(H2O)6]2+ + CO32- → [M(H2O)6]CO3 M2+(aq) + CO32-(aq) → MCO3(s) [Cu(H2O)6]2+ + CO32- → [Cu(H2O)6]CO3 Cu2+(aq) + CO32-(aq) → CuCO3(s) © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + CO32- [M(H2O)6]2+ + CO32- → [M(H2O)6]CO3 M2+(aq) + CO32-(aq) → MCO3(s) [Co(H2O)6]2+ + CO32- → [Co(H2O)6]CO3 Co2+(aq) + CO32-(aq) → CoCO3(s) © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + CO32- [M(H2O)6]2+ + CO32- → [M(H2O)6]CO3 M2+(aq) + CO32-(aq) → MCO3(s) [Fe(H2O)6]2+ + CO32- → [Fe(H2O)6]CO3 Fe2+(aq) + CO32-(aq) → FeCO3(s) © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + CO32- 2 H+ + CO32- → H2O + CO2 [M(H2O)6]3+ provides 3 H+ ions 2 [M(H2O)6]3+ + 3 CO32- → 2 [M(H2O)3(OH)3] + 3 H2O + 3 CO2 2 [Cr(H2O)6]3+ + 3 CO32- → 2 [Cr(H2O)3(OH)3] + 3 H2O + 3 CO2 © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + CO32- 2 H+ + CO32- → H2O + CO2 [M(H2O)6]3+ provides 3 H+ ions 2 [M(H2O)6]3+ + 3 CO32- → 2 [M(H2O)3(OH)3] + 3 H2O + 3 CO2 2 [Fe(H2O)6]3+ + 3 CO32- → 2 [Fe(H2O)3(OH)3] + 3 H2O + 3 CO2 © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

AQUA IONS + CO32- 2 H+ + CO32- → H2O + CO2 [M(H2O)6]3+ provides 3 H+ ions 2 [M(H2O)6]3+ + 3 CO32- → 2 [M(H2O)3(OH)3] + 3 H2O + 3 CO2 2 [Al(H2O)6]3+ + 3 CO32- → 2 [Al(H2O)3(OH)3] + 3 H2O + 3 CO2 © www.chemsheets.co.uk A2 042 20-Jul-12

SUBSTITUTION BY Cl- © www.chemsheets.co.uk A2 042 20-Jul-12

[Co(H2O)6]2+ + 4 Cl-  [CoCl4]2- + 6 H2O © www.chemsheets.co.uk A2 042 20-Jul-12

SUBSTITUTION by larger ligands Cl- bigger than O of H2O – only four Cl-’s fit around Mn+ H Cl- O H © www.chemsheets.co.uk A2 042 20-Jul-12

[Cu(H2O)6]2+ + 4 Cl- → [CuCl4]2- + 6 H2O © www.chemsheets.co.uk A2 042 20-Jul-12

SUBSTITUTION BY NH3 © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

SUBSTITUTION by similar sized ligands [Co(H2O)6]2+ + 6 NH3 → [Co(NH3)6]2+ + 6 H2O air [Co(NH3)6]2+ © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

SUBSTITUTION by similar sized ligands [Co(H2O)6]2+ + 6 NH3 → [Co(NH3)6]2+ + 6 H2O air [Co(NH3)6]2+ [Cu(H2O)6]2+ + 4 NH3 → [Cu(NH3)4(H2O)2]2+ + 4 H2O © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

SUBSTITUTION by similar sized ligands [Co(H2O)6]2+ + 6 NH3 → [Co(NH3)6]2+ + 6 H2O air [Co(NH3)6]2+ [Cu(H2O)6]2+ + 4 NH3 → [Cu(NH3)4(H2O)2]2+ + 4 H2O [Fe(H2O)6]2+ © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

SUBSTITUTION by similar sized ligands [Co(H2O)6]2+ + 6 NH3 → [Co(NH3)6]2+ + 6 H2O air [Co(NH3)6]2+ [Cu(H2O)6]2+ + 4 NH3 → [Cu(NH3)4(H2O)2]2+ + 4 H2O [Fe(H2O)6]2+ [Fe(H2O)6]3+ © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

SUBSTITUTION by similar sized ligands [Co(H2O)6]2+ + 6 NH3 → [Co(NH3)6]2+ + 6 H2O air [Co(NH3)6]2+ [Cu(H2O)6]2+ + 4 NH3 → [Cu(NH3)4(H2O)2]2+ + 4 H2O [Fe(H2O)6]2+ [Fe(H2O)6]3+ [Cr(H2O)6]3+ + 6 NH3 → [Cr(NH3)6]3+ + 6 H2O © www.chemsheets.co.uk A2 042 20-Jul-12

© www.chemsheets.co.uk A2 042 20-Jul-12

SUBSTITUTION by similar sized ligands [Co(H2O)6]2+ + 6 NH3 → [Co(NH3)6]2+ + 6 H2O air [Co(NH3)6]2+ [Cu(H2O)6]2+ + 4 NH3 → [Cu(NH3)4(H2O)2]2+ + 4 H2O [Fe(H2O)6]2+ [Fe(H2O)6]3+ [Cr(H2O)6]3+ + 6 NH3 → [Cr(NH3)6]3+ + 6 H2O [Al(H2O)6]3+ © www.chemsheets.co.uk A2 042 20-Jul-12

SUMMARY 1 © www.chemsheets.co.uk A2 042 20-Jul-12

SUMMARY [M(H2O)6]3+ M(OH)3 + CO2 M(OH)3 [Cr(NH3)6]3+ [Cr(OH)6]3- OH- / NH3 H+ XS NH3 M(OH)3 [Cr(NH3)6]3+ XS OH- [Cr(OH)6]3- [Al(OH)4]- © www.chemsheets.co.uk A2 042 20-Jul-12

SUMMARY [M(H2O)6]2+ MCO3 M(OH)2 [Co(NH3)6]2+ [Cu(NH3)4(H2O)2]2+ OH- / NH3 H+ XS NH3 M(OH)2 [Co(NH3)6]2+ [Cu(NH3)4(H2O)2]2+ XS OH- No reaction © www.chemsheets.co.uk A2 042 20-Jul-12

CHELATE EFFECT © www.chemsheets.co.uk A2 042 20-Jul-12

THE CHELATE EFFECT [Cr(H2O)6]3+ + 3 en → [Cr(en)3]3+ + 6 H2O 4 particles → 7 particles [Cr(H2O)6]3+ + EDTA4- → [Cr(EDTA)]- + 6 H2O 2 particles → 7 particles Small H in substitution reactions. Big increase in entropy (large +ve S). Products are thermodynamically more stable than reactants – known as the “chelate effect” © www.chemsheets.co.uk A2 042 20-Jul-12

REDOX REACTIONS © www.chemsheets.co.uk A2 042 20-Jul-12

REDUCTION OF Cr(+6) 2 CrO42- + 2 H+  Cr2O72- + H2O oxidation state yellow Cr +6 orange oxidation state species colour Cr +6 Cr2O72- orange © www.chemsheets.co.uk A2 042 20-Jul-12

REDUCTION OF Cr(+6) 2 CrO42- + 2 H+  Cr2O72- + H2O oxidation state yellow Cr +6 orange oxidation state species colour Cr +6 Cr2O72- orange Cr +3 Cr3+ [Cr(H2O)6]3+ green © www.chemsheets.co.uk A2 042 20-Jul-12

REDUCTION OF Cr(+6) 2 CrO42- + 2 H+  Cr2O72- + H2O oxidation state yellow Cr +6 orange oxidation state species colour Cr +6 Cr2O72- orange Cr +3 Cr3+ [Cr(H2O)6]3+ green Cr +2 Cr2+ [Cr(H2O)6]2+ blue Reduced by Zn/H+ from Cr +6 → +3 → +2 © www.chemsheets.co.uk A2 042 20-Jul-12

Cr(+3) – OXIDATION IN ALKALINE CONDITIONS Easier to oxidise (take electrons) from –ve species. Easier to reduce (add electrons) to +ve species. e.g. Cr(+3) in acidic conditions in alkaline conditions in very alkaline conditions [Cr(H2O)6]3+ [Cr(OH)3] [Cr(OH)6]3- H2O2 / OH- Zn / HCl CrO42- Cr(+6) [Cr(H2O)6]2+ Cr(+2) © www.chemsheets.co.uk A2 042 20-Jul-12

Cr(+3) – OXIDATION IN ALKALINE CONDITIONS CrO42-+ 4 H2O + 3 e-  Cr(OH)3 + 5 OH- E = -0.13 V Cr2O72- + 14 H+ + 6 e-  2 Cr3+ + 7 H2O E = +1.33 V © www.chemsheets.co.uk A2 042 20-Jul-12

Co(+2) – OXIDATION IN ALKALINE CONDITIONS air Co(OH)2 Co(OH)3 Co(+2) Co(+3) Made from Co2+ in alkaline conditions air [Co(NH3)6]2+ [Co(NH3)6]3+ Co(+2) Co(+3) Made from Co2+ in alkaline (NH3) conditions © www.chemsheets.co.uk A2 042 20-Jul-12

M(OH)2 – OXIDATION IN ALKALINE CONDITIONS air Co(OH)2 Co(OH)3 Co(+2) Co(+3) air Fe(OH)2 Fe(OH)3 Fe(+2) Fe(+3) Fe(OH)3 + e-  Fe(OH)2 + OH- E = -0.56 V Fe3+ + e-  Fe2+ E = +0.77 V © www.chemsheets.co.uk A2 042 20-Jul-12

SUMMARY 2 © www.chemsheets.co.uk A2 042 20-Jul-12

SUMMARY [M(H2O)6]3+ M(OH)3 [Cr(OH)6]3- CrO42- [Al(OH)4]- [Cr(NH3)6]3+ XS OH- OH- / NH3 XS NH3 [M(H2O)6]3+ M(OH)3 [Cr(NH3)6]3+ H+ [Cr(H2O)6]3+ Cr(OH)3 [Fe(H2O)6]3+ Fe(OH)3 [Al(H2O)6]3+ Al(OH)3 CO32- + CO2 © www.chemsheets.co.uk A2 042 20-Jul-12

SUMMARY [M(H2O)6]2+ M(OH)2 [CuCl4]2- [CoCl4]2- [Cu(H2O)2(NH3)4]2+ XS OH- Cl- OH- / NH3 XS NH3 [M(H2O)6]2+ M(OH)2 [Cu(H2O)2(NH3)4]2+ H+ [Cu(H2O)6]2+ Cu(OH)2 [Co(NH3)6]2+ [Co(H2O)6]2+ Co(OH)2 air [Fe(H2O)6]2+ Fe(OH)2 CO32- air [Co(NH3)6]3+ CuCO3 Co(OH)3 CoCO3 Fe(OH)3 FeCO3 © www.chemsheets.co.uk A2 042 20-Jul-12

SUMMARY [M(H2O)6]2+ MCO3 M(OH)2 [Co(NH3)6]2+ [Cu(NH3)4(H2O)2]2+ OH- / NH3 H+ XS NH3 M(OH)2 [Co(NH3)6]2+ [Cu(NH3)4(H2O)2]2+ XS OH- No reaction © www.chemsheets.co.uk A2 042 20-Jul-12