SPEED LIMIT n Quantum Lower Bounds Scott Aaronson (UC Berkeley) August 29, 2002.

Slides:



Advertisements
Similar presentations
Quantum Computing: Whats It Good For? Scott Aaronson Computer Science Department, UC Berkeley January 10,
Advertisements

Computation, Quantum Theory, and You Scott Aaronson, UC Berkeley Qualifying Exam May 13, 2002.
The Polynomial Method In Quantum and Classical Computing Scott Aaronson (MIT) OPEN PROBLEM.
Quantum Lower Bounds You probably Havent Seen Before (which doesnt imply that you dont know OF them) Scott Aaronson, UC Berkeley 9/24/2002.
Quantum Search of Spatial Regions Scott Aaronson (UC Berkeley) Joint work with Andris Ambainis (IAS / U. Latvia)
Quantum Lower Bound for the Collision Problem Scott Aaronson 1/10/2002 quant-ph/ I was born at the Big Bang. Cool! We have the same birthday.
The Complexity of Sampling Histories Scott Aaronson, UC Berkeley August 5, 2003.
Quantum Lower Bounds The Polynomial and Adversary Methods Scott Aaronson September 14, 2001 Prelim Exam Talk.
Quantum Versus Classical Proofs and Advice Scott Aaronson Waterloo MIT Greg Kuperberg UC Davis | x {0,1} n ?
Quantum Software Copy-Protection Scott Aaronson (MIT) |
The Future (and Past) of Quantum Lower Bounds by Polynomials Scott Aaronson UC Berkeley.
Lower Bounds for Local Search by Quantum Arguments Scott Aaronson.
Quantum Computing and Dynamical Quantum Models ( quant-ph/ ) Scott Aaronson, UC Berkeley QC Seminar May 14, 2002.
Limitations of Quantum Advice and One-Way Communication Scott Aaronson UC Berkeley IAS Useful?
Quantum Search of Spatial Regions Scott Aaronson (UC Berkeley) Joint work with Andris Ambainis (U. Latvia)
Quantum Double Feature Scott Aaronson (MIT) The Learnability of Quantum States Quantum Software Copy-Protection.
Lower Bounds for Local Search by Quantum Arguments Scott Aaronson (UC Berkeley) August 14, 2003.
An Invitation to Quantum Complexity Theory The Study of What We Cant Do With Computers We Dont Have Scott Aaronson (MIT) QIP08, New Delhi BQP NP- complete.
New Evidence That Quantum Mechanics Is Hard to Simulate on Classical Computers Scott Aaronson Parts based on joint work with Alex Arkhipov.
How to Solve Longstanding Open Problems In Quantum Computing Using Only Fourier Analysis Scott Aaronson (MIT) For those who hate quantum: The open problems.
Scott Aaronson Institut pour l'Étude Avançée Le Principe de la Postselection.
Oracles Are Subtle But Not Malicious Scott Aaronson University of Waterloo.
The Equivalence of Sampling and Searching Scott Aaronson MIT.
The Collision Lower Bound After 12 Years Scott Aaronson (MIT) Lower bound for a collision problem.
The Computational Complexity of Linear Optics Scott Aaronson and Alex Arkhipov MIT vs.
Solving Hard Problems With Light Scott Aaronson (Assoc. Prof., EECS) Joint work with Alex Arkhipov vs.
Scott Aaronson (MIT) Based on joint work with John Watrous (U. Waterloo) BQP PSPACE Quantum Computing With Closed Timelike Curves.
Shortest Vector In A Lattice is NP-Hard to approximate
COMP 553: Algorithmic Game Theory Fall 2014 Yang Cai Lecture 21.
Approximation, Chance and Networks Lecture Notes BISS 2005, Bertinoro March Alessandro Panconesi University La Sapienza of Rome.
Scott Aaronson (MIT) Forrelation A problem admitting enormous quantum speedup, which I and others have studied under various names over the years, which.
The Theory of NP-Completeness
CS420 lecture one Problems, algorithms, decidability, tractability.
Department of Computer Science & Engineering University of Washington
Lower Bounds for Collision and Distinctness with Small Range By: Andris Ambainis {medv, Mar 17, 2004.
Chapter 11: Limitations of Algorithmic Power
1 Recap (I) n -qubit quantum state: 2 n -dimensional unit vector Unitary op: 2 n  2 n linear operation U such that U † U = I (where U † denotes the conjugate.
Quantum Algorithms II Andrew C. Yao Tsinghua University & Chinese U. of Hong Kong.
Scott Aaronson (MIT) Andris Ambainis (U. of Latvia) Forrelation: A Problem that Optimally Separates Quantum from Classical Computing H H H H H H f |0 
Theory of Computing Lecture 19 MAS 714 Hartmut Klauck.
Quantum Algorithms for Neural Networks Daniel Shumow.
One Complexity Theorist’s View of Quantum Computing Lance Fortnow NEC Research Institute.
New quantum lower bound method, with applications to direct product theorems Andris Ambainis, U. Waterloo Robert Spalek, CWI, Amsterdam Ronald de Wolf,
1 The Theory of NP-Completeness 2012/11/6 P: the class of problems which can be solved by a deterministic polynomial algorithm. NP : the class of decision.
Quantum Computing MAS 725 Hartmut Klauck NTU TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A.
Week 10Complexity of Algorithms1 Hard Computational Problems Some computational problems are hard Despite a numerous attempts we do not know any efficient.
PROBABILISTIC COMPUTATION By Remanth Dabbati. INDEX  Probabilistic Turing Machine  Probabilistic Complexity Classes  Probabilistic Algorithms.
CSCI 3160 Design and Analysis of Algorithms Tutorial 10 Chengyu Lin.
1 The Theory of NP-Completeness 2 Cook ’ s Theorem (1971) Prof. Cook Toronto U. Receiving Turing Award (1982) Discussing difficult problems: worst case.
Umans Complexity Theory Lectures Lecture 1a: Problems and Languages.
Quantum random walks and quantum algorithms Andris Ambainis University of Latvia.
Exact quantum algorithms Andris Ambainis University of Latvia.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 667 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 653 Lecture.
Strings Basic data type in computational biology A string is an ordered succession of characters or symbols from a finite set called an alphabet Sequence.
Quantum Computing MAS 725 Hartmut Klauck NTU
Quantum algorithms are at most polynomially faster for any symmetric function Andris Ambainis University of Latvia.
CS216: Program and Data Representation University of Virginia Computer Science Spring 2006 David Evans Lecture 8: Crash Course in Computational Complexity.
Quantum Computation Stephen Jordan. Church-Turing Thesis ● Weak Form: Anything we would regard as “computable” can be computed by a Turing machine. ●
1 Introduction to Quantum Information Processing QIC 710 / CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lectures
The NP class. NP-completeness Lecture2. The NP-class The NP class is a class that contains all the problems that can be decided by a Non-Deterministic.
The NP class. NP-completeness
P & NP.
Quantum algorithms for evaluating Boolean formulas
Scott Aaronson (MIT) QIP08, New Delhi
Introduction to Quantum Computing Lecture 1 of 2
Quantum Computing: What’s It Good For?
Analysis and design of algorithm
A Ridiculously Brief Overview
Chapter 11 Limitations of Algorithm Power
Quantum Lower Bounds Via Laurent Polynomials
Presentation transcript:

SPEED LIMIT n Quantum Lower Bounds Scott Aaronson (UC Berkeley) August 29, 2002

Andris Ambainis I Cant Believe Its Not Andris TM

Many of the deepest discoveries of science are limitations - No superluminal signaling - No perpetual-motion machines - No complete axiomitization for arithmetic What limitations on computing are imposed by the laws of physics? Quantum computing lets us seriously address this question Thats why everyone should care about it even if factoring machines are never built

Conjecture 1: Quantum computers cant solve NP- complete problems (solve = in polynomial time) Too hardwe dont even know if classical ones can Conjecture 2: Quantum computers cant solve NP- complete problems unless classical ones can also Still too hard Conjecture 3: Quantum computers cant solve NP-complete problems using only brute force Looks easierbut can we formalize the notion of brute force?

Black-Box Model Suppose we want to decide whether Boolean formula has a satisfying assignment Brute force might mean we restrict ourselves to asking, i.e., Does assignment X satisfy ? So were treating as a black box There are 2 n possible questions How many must we ask to know whether any one has a yes answer? What if we can ask in superposition?

Quantum Query Model Suppose there are n possible yes/no questions Let x i {0,1} be answer to question i In quantum algorithm, each basis state has form |i,z, where i = index to query z = workspace Query transformation Q maps each |i,z to (1-2x i )|i,z (i.e. performs phase flip conditioned on x i =1)

Quantum Query Model (cont) Algorithm consists of interleaved queries and unitaries: U 0 Q U 1 … U T-1 Q U T U t : arbitrary unitary that doesnt depend on x i s (we dont care how hard it is to implement) At the end we measure to obtain a basis state |i,z, then output (say) first bit of z

Quantum Query Complexity Let f(X) be the function were trying to compute Algorithm computes f if it outputs f(X) with probability at least 2/3 for every X Q(f) = minimum # of queries made by any algorithm that computes f Immediate: Q(f) R(f) D(f) R(f) = randomized query complexity D(f) = deterministic query complexity

Example: Search Are there any marked items in database? OR n (x 1 …x n ) =0 if every x i is 0 1 otherwise Classical: D(OR n ) = R(OR n ) = (n) Quantum: Q(OR n ) = O( n), from Grovers algorithm Show: Q(OR n ) = ( n)i.e., Grovers algorithm is optimal

Lower Bound Methods (1) Hybrid Method Bennett, Bernstein, Brassard, Vazirani 1997 (2) Polynomial Method Beals, Buhrman, Cleve, Mosca, de Wolf 1998 (3) Adversary Method Ambainis 2000 Well skip (1), and prove search lower bound with (2) and again (3)

Polynomial Method Quantum algorithm that computes f with few queries Low-degree polynomial approximating f Low-degree univariate polynomial with large derivative Our Mathematician Friend I can prove this cant exist!

Multivariate polynomial p approximates f if for every x 1 …x n,|p(x 1 …x n ) – f(x 1 …x n )| 1/3 deg(f) = minimum degree of polynomial that approximates f ~ Proposition: Q(f) deg(f)/2 for all f Proof: Initially, amplitude i,z of each |i,z is a degree-0 multilinear polynomial in x 1 …x n A query replaces each i,z by (1-2x i ) i,z, increasing its degree by 1. The U t s cant increase degree. At the end, squaring amplitudes doubles degree ~

Symmetrization Given a polynomial p(x 1 …x n ) of degree d, let Proposition (Minsky-Papert 1968): q(k) is a univariate polynomial in k, with degree at most d Proof: Let X=x 1 …x n and |X|=x 1 +…+x n. Then Furthermore, for some a 1 …a d which is a polynomial in |X| of degree d.

Markovs Inequality Let p be a polynomial bounded in [0,b] in the interval [0,a], that has derivative at least c somewhere in that interval. Then a b c

Approximate Degree of OR The polynomial q(k) has q(0) 1/3 and q(1) 2/3, so |q(k)| 1/3 for some k [0,1] Since q represents acceptance probability, q(k) [0,1] for integers k {0…n} What about non-integer k? If q strays h away from [0,1], then |q(k)| 2h somewhere So by Markov, Ehlich-Zeller 1964 / Rivlin-Cheney 1966 / Nisan-Szegedy 1994

What Else The Polynomial Method Gives Us Q(Parity n ) and Q(Majority n ) are (n) For any total Boolean f, Q(f) = (D(f) 1/6 ) (Q(f) = (D(f) 1/4 ) if f is monotone)

Adversary Method Give algorithm a superposition of inputs Consider bipartite state: (1) input and (2) algorithm workspace Initially, these systems are unentangled By end, must be highly entangled Argue entanglement cant increase much by one query

Let Y i = input with i th bit 1, all others 0 Feed algorithm as input Keep track of density matrix of input part Applying This To Search Initial :Final : Off-diagonal entries must be small

Letbe sum of off-diagonal entries S = n-1 initially. By end, need (say) S n/3 Claim: A query can decrease S by at most O( n) Proof: Decompose into pure states, one for each basis state |i,z of algorithm part Querying x i only affects i th row and i th column By Cauchy-Schwarz, each row or column sums to at most n

Depth-2 Game-Tree Search Recursive Grover gives With polynomial method, only know how to get Q(GameTree n ) = (n 1/4 ) Adversary method gives Q(GameTree n ) = ( n) OR AND … …

Inverting A Permutation Could this be easier than ordinary search? Hybrid method gives Q(Invert n ) = (n 1/3 ) Adversary method gives Q(Invert n ) = ( n) Problem: Find the 1

Collision Problem Given Promised: (1) X is one-to-one (permutation) or (2) X is two-to-one Problem: Decide which using few queries to the x i R(Collision n ) = ( n)

Brassard-Høyer-Tapp (1997) O(n 1/3 ) quantum alg for collision problem n 1/3 x i s, queried classically, sorted for fast lookup Grovers algorithm over n 2/3 x i s Do I collide with any of the pink x i s?

Result Q(Collision n ) = (n 1/5 ) (A 2002) Previously no lower bound better than (1) Shi 2002 improved to (n 1/4 ) (n 1/3 ) when |range| 3n/2 Why so much harder than search?

Cartoon Version of Proof Imagine feeding algorithm g-to-1 functions, where g could be greater than 2 Let P(g) = expected probability that algorithm outputs 2-to-1 when given random g-to-1 function Crucial Lemma: P(g) is a polynomial in g, with deg(P) 2T (where T = number of queries) P(g) [0,1] for integers g, and P(g) 1/3 for some g [1,2]. So we can use Markovs inequality Caveat: What does g-to-1 function mean if g doesnt divide n? (Related to why argument breaks down for g> n)

There are no good open problems left in quantum lower bounds BULL

In the collision problem, suppose the function X:{0,1} n {0,1} n is 1-to-1 rather than 2-to-1. Can you give me a polynomial-size quantum certificate, by which I can verify that fact in polynomial time?

We know Q(f) = (R(f) 1/6 ) for Boolean f defined on all 2 n inputs. Can we show a similar bound for f defined on 1- fraction of inputs? Would be large step toward Conjecture: If BPP A BQP A for a random oracle A with probability 1, then BPP BQP

Suppose that whenever our quantum computer makes a queryreplacing |i by |i |x ithe |x i register is measured immediately. Can still do period- finding in this model, but not Grover search Is there any total function for which we get a speedup over classical? PHYSICALLY MOTIVATED

Suppose inputs to Grovers algorithm are arranged in a n-by- n grid. Our quantum computer has unbounded memory, but to move the read head one square takes unit time. Can we search in less than (n) time? Marked item Quantum computer