QUICK QUIZ 22.1 (end of section 22.1)

Slides:



Advertisements
Similar presentations
Heat Engines, Entropy, and the Second Law of Thermodynamics
Advertisements

QUICK QUIZ 21.1 (end of section 21.1)
Chapter 15 Thermodynamics.
The Laws of Thermodynamics
Entropy and Second Law of Thermodynamics
Entropy and the Second Law of Thermodynamics
Entropy Cengel & Boles, Chapter 6 ME 152.
Entropy and the Second Law of Thermodynamics
How much work is done by the gas in the cycle shown? A] 0 B] p 0 V 0 C] 2p 0 V 0 D] -2p 0 V 0 E] 4 p 0 V 0 How much total heat is added to the gas in the.
Absolute Zero Physics 313 Professor Lee Carkner Lecture 15.
Thermo & Stat Mech - Spring 2006 Class 5 1 Thermodynamics and Statistical Mechanics Heat Engines and Refrigerators.
A cylinder containing an ideal gas is heated at constant pressure from 300K to 350K by immersion in a bath of hot water. Is this process reversible or.
Entropy and the Second Law of Thermodynamics
Phy 202: General Physics II Ch 15: Thermodynamics.
For the cyclic process shown, W is:D A] 0, because it’s a loop B] p 0 V 0 C] - p 0 V 0 D] 2 p 0 V 0 E] 6 p 0 V 0 For the cyclic process shown,  U is:
Chapter Thermodynamics
Chapter 22 Heat Engines, Entropy and the Second Law of Thermodynamics.
Heat Engines, Entropy and the Second Law of Thermodynamics
Heat Engines, Entropy and the Second Law of Thermodynamics
The Laws of Thermodynamics
Preview Objectives Heat, Work, and Internal Energy Thermodynamic Processes Chapter 10 Section 1 Relationships Between Heat and Work.
Chapter 15: Thermodynamics
The Laws of Thermodynamics
Second Law of Thermodynamics.  No cyclic process that converts heat entirely into work is possible.  W can never be equal to Q.  Some energy must always.
Q19.1 A system can be taken from state a to state b along any of the three paths shown in the pV–diagram. If state b has greater internal energy than state.
Heat Engines and The Carnot Cycle. First Statement of the Second Law of Thermodynamics The first statement of the second law is a statement from common.
Thermodynamics The First Law of Thermodynamics Thermal Processes that Utilize an Ideal Gas The Second Law of Thermodynamics Heat Engines Carnot’s Principle.
The Second Law of Thermodynamics Chapter 6. The Second Law  The second law of thermodynamics states that processes occur in a certain direction, not.
Chapter 12 The Laws of Thermodynamics. Homework, Chapter 11 1,3,5,8,13,15,21,23,31,34.
Lecture Outline Chapter 12 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Preview Objectives Heat, Work, and Internal Energy Thermodynamic Processes Chapter 10 Section 1 Relationships Between Heat and Work.
Preview Objectives Heat, Work, and Internal Energy Thermodynamic Processes Chapter 10 Section 1 Relationships Between Heat and Work.
The Second Law of Thermodynamics
Chapter 13: Thermodynamics
Chapter 10 Preview Objectives Heat, Work, and Internal Energy
CHAPTER 15 Thermodynamics Thermodynamic Systems and Their Surroundings Thermodynamics is the branch of physics that is built upon the fundamental.
MME 2009 Metallurgical Thermodynamics
Thermodynamics Thermal Processes The 2 nd Law of Thermodynamics Entropy.
Thermodynamics Internal energy of a system can be increased either by adding energy to the system or by doing work on the system Remember internal energy.
kr 1 Lecture Notes on Thermodynamics 2008 Chapter 7 Entropy Prof. Man Y. Kim, Autumn 2008, ⓒ Aerospace.
Physics 207: Lecture 29, Pg 1 Physics 207, Lecture 29, Dec. 13 l Agenda: Finish Ch. 22, Start review, Evaluations  Heat engines and Second Law of thermodynamics.
Thermodynamics Thermodynamics is a branch of physics concerned with heat and temperature and their relation to energy and work.
Chapter 15 Thermodynamics Thermodynamic Systems and Their Surroundings Thermodynamics is the branch of physics that is built upon the fundamental.
Chapter 11 Thermodynamics Heat and Work and Internal Energy o Heat = Work and therefore can be converted back and forth o Work  heat if work.
Thermodynamics II Thermodynamics II. THTH TCTC QHQH QCQC W HEAT ENGINE THTH TCTC QHQH QCQC W REFRIGERATOR system l system taken in closed cycle   U.
Chapter 12 Laws of Thermodynamics. Chapter 12 Objectives Internal energy vs heat Work done on or by a system Adiabatic process 1 st Law of Thermodynamics.
Chapter 15 Thermodynamics Thermodynamic Systems and Their Surroundings Thermodynamics is the branch of physics that is built upon the fundamental.
Unit 61: Engineering Thermodynamics Lesson 9: Carnot Engine Cycles.
Work in Thermodynamic Processes
KIMIA LINGKUNGAN BAGIAN 2: TERMODINAMIKA. PREVIEW In this third part of the course we:  define and apply a number of thermodynamic ideas and concepts.
THE SECOND LAW OF THERMODYNAMICS Entropy. Entropy and the direction of time Microscopically the eqs. of physics are time reversible ie you can turn the.
Lecture Outline Chapter 12 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Chapter 20 Lecture 35: Entropy and the Second Law of Thermodynamics HW13 (problems):19.3, 19.10, 19.44, 19.75, 20.5, 20.18, 20.28,
Learning Goals for Chapter 20 Looking forward at … the difference between reversible and irreversible processes. the physics of internal-combustion engines.
Chapter 11 Super Review. 1. A two mole sample of a gas has a temperature of 1000 K and a volume of 6 m 3. What is the pressure?
Entropy PREPARED BY: KANZARIYA JAYESHBHAI
Entropy and the Second Law of Thermodynamics
Entropy and the Second Law of Thermodynamics By Dr A K Mohapatra
Introduction To Thermodynamics
Heat Engines, Entropy, & the 2nd Law of Thermodynamics
Chapter 15: Thermodynamics
Thermodynamics Chapter 15.
Plan for Today (AP Physics 2) Lecture/Notes on Heat Engines, Carnot Engines, and Entropy.
Entropy and the Second Law of Thermodynamics
The Laws of Thermodynamics
Lecture 45 Entropy Clausius theorem Entropy as a state function
Heat Engines Entropy The Second Law of Thermodynamics
Chapter 18,19and20 Thermodynamics.
This pV–diagram shows two ways to take a system from state a (at lower left) to state c (at upper right): • via state b (at upper left), or • via state.
Presentation transcript:

QUICK QUIZ 22.1 (end of section 22.1) An engine cycle is shown on the PV diagram below, with some of the energy transfers indicated on the diagram. The engine absorbs heat energy, |Qh|, along the path from A to B, and then outputs an amount of work along the path from B to C that is a) less than |Qh|, b) equal to |Qh|, c) greater than |Qh|, d) a or b, or e) a, b or c.

QUICK QUIZ 22.1 ANSWER (e) The second law refers to the energy transfers that occur during an entire cycle. For the entire cycle, it is impossible to only absorb heat |Qh| at the hot reservoir and convert that heat entirely to work. In addition, from the first law, the net heat absorbed must be equal to the net work output for the entire cycle. However, it is possible to absorb a certain quantity of heat along one branch of the cycle and output a quantity of work that is less than, greater than, or equal to this heat energy along some other branch of the cycle. For example, the cycle shown approximates two isotherms (A to B and C to D) and two adiabats (D to A and B to C). Recall from Equation 20.13 that the heat absorbed along the isotherm from A to B will be |Qh| = nRThln(VB/VA). In addition, the work output along the reversible adiabat from B to C will be equal to the change in internal energy of the gas. From Chapter 21 for a monatomic ideal gas, this quantity will be W = DEint = (3/2)nR(Th – Tc). Depending on the relative values, VA, VB, Th and Tc, the work may be greater than, less than or equal to the heat absorbed.

QUICK QUIZ 22.2 (end of section 22.2) The second law implies that the coefficient of performance of a heat pump a) must be less than one, b) must be less than or equal to one, c) can not be less than one, d) can not be infinite, or e) can not be zero.

QUICK QUIZ 22.2 ANSWER (d). According to Equation 22.3, the coefficient of performance for a heat pump is equal to the energy transferred at high temperature divided by the work done by the pump. Violating the second law would imply that heat is transferred at high temperature with no input of work. Therefore, the denominator would be zero and the coefficient of performance would be infinite. It is possible to have a heat pump with a coefficient of performance less than one. This implies that the input work is transferred into heat that goes both in the hot and the cold reservoir. As discussed in the text, such a situation can occur if the outside temperature is very low.

QUICK QUIZ 22.3 (end of section 22.4) In the argument for the validity of Carnot’s theorem, the primary quality used to distinguish a Carnot engine from a real engine is that a) a Carnot engine operates in a cycle of two adiabats and two isotherms, b) a Carnot engine is 100% efficient, c) a Carnot engine is reversible, or d) a Carnot engine does not deliver heat to a cold reservoir.

QUICK QUIZ 22.3 ANSWER (c). In the argument, a real engine, with assumed efficiency that is greater than a Carnot engine’s efficiency, is used to drive a Carnot engine in reverse. Because a Carnot engine is reversible, the heat taken from the hot reservoir for the Carnot engine will be precisely the same as the heat delivered to the hot reservoir for the Carnot refrigerator. This reversible quality of the Carnot engine is the main feature of the argument. From the inequality e > eC, or |W|/|Q’h| > |W|/|Qh|, one can then establish that |Qh| > |Q’h| and that there will be a net heat transfer to the hot reservoir with no net input of work, thus defying the second law.

QUICK QUIZ 22.4 (end of section 22.5) As an automotive engineer, you are given the choice of increasing the efficiency of a gasoline engine by increasing the compression ratio by a factor of two or by increasing the absolute highest temperature (TC) by a factor of two. To get the highest efficiency, you should a) increase the compression ratio, b) increase TC, c) either method will work equally well, or d) more information is needed.

QUICK QUIZ 22.4 ANSWER (b). Example 22.6 gives the efficiency in terms of the compression ratio, r = V1/V2, and the high temperature, TC. Replacing these variables with their initial values, ro and To , and assuming g = 1.4, we obtain for the initial efficiency, If we double the compression ratio, we obtain On the other hand, if we double the high temperature, we obtain The efficiency will be greater in the second case since the denominator of the fraction will be larger.

QUICK QUIZ 22.5 (end of section 22.7) The green curve in the PV diagram below represents a reversible adiabatic expansion of an ideal gas from some initial volume, Vi, and Pressure, Pi, to some final volume, Vf and pressure, Pf. If the same gas starting from the same initial volume and pressure were to undergo an adiabatic free expansion to the same final volume, Vf, the point on the diagram that could represent the final state would be a) point A, b) point B (the same as the final state for the reversible adiabatic expansion), c) point C, or d) points A, B, or C, depending on the situation.

QUICK QUIZ 22.5 ANSWER (a). Recall from the discussion in Section 22.7 that an adiabatic free expansion of an ideal gas is an isothermal process. In fact, to determine the change in entropy for this process, a reversible isotherm was used. For an ideal gas, reversible isothermal processes are represented by curves on a PV diagram that have the form, PV = constant. In addition, reversible adiabatic processes have the form, PVg = constant, and are therefore always steeper curves than the isotherms, as examination of Figure 22.11 reveals. The less steep isotherm (shown in red) starting from the same initial pressure and volume, must end up at a pressure that is higher than the final pressure of the reversible adiabat. Also, a reversible adiabat for a higher constant entropy is shown in purple. The final state, A, sits on this curve of higher entropy, consistent with the fact that the entropy increases in an adiabatic free expansion.