Научно-практический центр протонной лучевой терапии и радиохирургии (Москва-Дубна) A SYSTEM FOR MEASUREMENT OF A THERAPEUTIC PROTON BEAM DOSE DISTRIBUTION.

Slides:



Advertisements
Similar presentations
How is radiotherapy given Radiotherapy can be given in two ways: from outside or inside the body. External radiotherapy is the most common method of treatment.
Advertisements

Image Reconstruction.
Monte Carlo Based Implementation of an Energy Modulation System for Proton Therapy G.A.P. Cirrone Qualified Medical Physicist PhD Laboratori Nazionali.
F. Foppiano, M.G. Pia, M. Piergentili Medical Linac IEEE NSS, October 2004, Rome, Italy
Beam Therapy Equipment 2 Linear Accelerator Head.
X-Ray Beam Restrictors
Energy deposition and neutron background studies for a low energy proton therapy facility Roxana Rata*, Roger Barlow* * International Institute for Accelerator.
Experience, Expertise and a Commitment to Excellence™
Simulation of heavy ion therapy system using Geant4 Satoru Kameoka ※ 1, ※ 2 Takashi SASAKI ※ 1, ※ 2, Koichi MURAKAMI ※ 1, ※ 2, Tsukasa ASO ※ 2 ※ 3, Akinori.
Photon Beam Monitor-Unit Calculations
Radiotherapy Planning Stephen C. Billups University of Colorado at Denver
Conformal Radiotherapy for Head and Neck Cancer Conformal Radiotherapy in Head and Neck Cancer B. Schicker, U. Götz, I. C. Kiricuta ISRO-Limburg - Germany.
Para-spinal Tumors Encircling the Spinal Cord IMRT Comparison of Several Target Definitions.
Tumour Therapy with Particle Beams Claus Grupen University of Siegen, Germany [physics/ ] Phy 224B Chapter 20: Applications of Nuclear Physics 24.
Lotte Verbunt Investigation of leaf positioning accuracy of two types of Siemens MLCs making use of an EPID.
Interactions of charged particles with the patient I.The depth-dose distribution - How the Bragg Peak comes about - (Thomas Bortfeld) II.The lateral dose.
Tissue inhomogeneities in Monte Carlo treatment planning for proton therapy L. Beaulieu 1, M. Bazalova 2,3, C. Furstoss 4, F. Verhaegen 2,5 (1) Centre.
Part 1 Introduction to Radiotherapy and External Beam Radiation Deepak Khuntia, MD Vice President, Medical Affairs Varian Medical Systems.
At the position d max of maximum energy loss of radiation, the number of secondary ionizations products peaks which in turn maximizes the dose at that.
Electron Beams: Physical Principles and Dosimetry
BIOLOGICAL EFFICIENCY OF A THERAPEUTIC PROTON BEAM: A STUDY OF HUMAN MELANOMA CELL LINE I. Petrović 1, A. Ristić-Fira 1, D. Todorović 1, L. Korićanac 1,
Dose Distribution and Scatter Analysis
به نام خداوند بخشایندۀ بخشایشگر
TWO FIELD BREAST PLAN VS. OPTIMIZED CONFORMAL BREAST PLAN: COMPARISON OF PLAN PARAMETERS Authors: Borko Basarić, Ozren Čudić, Milan Teodorović, Borislava.
Verification of the Dose Distributions with Geant4 Simulation for Proton Therapy Tsukasa Aso (Toyama College of Maritime Tech.) A.Kimura (JST CREST) S.Tanaka.
A (Quick) Survey of (Some) Medical Accelerators Dr. Todd Satogata Brookhaven National Laboratory SUNY Stony Brook PHY 684 – September 5, 2007  The NASA.
The Skandion clinic, plans for the use of particle beams for radiation therapy in Sweden presented by Erik Grusell, medical radiation physicist Dept of.
PAMELA Contact Author: CONFORM is an RCUK-funded Basic Technology Programme Charged Particle Therapy Treating cancer with protons and light ions Ken Peach,
Augen-Tumor-Therapie mit 68 MeV Protonen am Hahn-Meitner-Institut Berlin C.Rethfeldt / SF4-ATT 1. Ionenstrahllabor ISL 2. Augen-Tumor-Therapie als Anwendung.
External Beam Radiotherapy
Applications of Geant4 in Proton Radiotherapy at the University of Texas M.D. Anderson Cancer Center Jerimy C. Polf Assistant Professor Department of Radiation.
Radiation Protection in Radiotherapy
In vivo dosimetry Eirik Malinen Eva Stabell Bergstrand Dag Rune Olsen.
Surface dose prediction and verification for IMRT plans using line dose profiles † Ronald E. Berg, † Michael S. Gossman and ‡ Stephen J. Klash † Erlanger.
Bragg Peak By: Megan Whitley. Bragg Peak  Bragg Peak is the characteristic exhibited by protons that makes them SO appealing for cancer treatment. 
May 31, th PTCOG in Catania, Italy1 Treatment Planning for Broad-Beam 3D Irradiation Heavy-Ion Radiotherapy N. Kanematsu, M. Endo, and T. Kanai,
Medical Accelerator F. Foppiano, M.G. Pia, M. Piergentili
APPLICATION TO THE HADROTHERAPY FOR OCULAR MELANOMAS G.A. Pablo Cirrone Qualified Medical Physicist and PhD Student University of Catania and Laboratori.
1 Radiotherapy, hadrontherapy and treatment planning systems. Faiza Bourhaleb INFN-Torino University Med 1er-Morocco  Radiotherapy  Optimization techniques.
Part VIII:Medical Exposures in Radiotherapy Lecture 6: Determination of dose to the patient in Radiotherapy II IAEA Post Graduate Educational Course on.
F. Foppiano, M.G. Pia, M. Piergentili
Somvilai Mayurasakorn, MD. Division of Therapeutic Radiology and Oncology, Faculty of Medicine, Chiang Mai University Somvilai Mayurasakorn, MD. Division.
Geant4 Activities in Japan Some news from Takashi Sasaki, Koichi Murakami, Akinori Kimura and colleagues.
8/Mar./041st Workshopon the Italy-Japan Collaboration on Geant4 Medical Application 1 Use-Case on treatment planning at HIMAC Koichi Murakami KEK 1 st.
If information seems to be missing, make any reasonable assumptions. 1.A target has an areal density of 2.3 g/cm 2 and a thickness of 0.8 inch. What is.
FrontierScience G.P.1 MATRIX an innovative Pixel Ionization Chamber for Online Monitoring of Hadrontherapy Treatments Giuseppe Pittà.
Implementation of a New Monte Carlo Simulation Tool for the Development of a Proton Therapy Beam Line and Verification of the related Dose Distributions.
Report on the completion of theme /2009 "Further Development of Methods and Instrumentation for Radiotherapy and Associated Diagnostics.
Thickness of CZT detector 110 MeV140 MeV DETECTOR A (1 mm CZT + 5 mm CZT) DETECTOR B (1 mm CZT + 10 mm CZT) DETECTOR C (1 mm CZT + 15 mm CZT) A. Generation.
Dae-Hyun Kim Dept. of Biomedical Engineering The Catholic University of Korea Department of Biomedical Engineering Research Institute.
Koichi MurakamiGeant4 Physics Verification and Validation (17-19/Jul./2006) 1 Results from the recent carbon test beam at HIMAC Koichi Murakami Statoru.
Development of elements of 3D planning program for radiotherapy Graphical editor options  automated enclose of contour  correction of intersections 
Research and Practical Conference “Accelerators and Radiation technologies for the Futures of Russia” September 2012, Saint-Petersburg Proton Radiation.
J Cho, G Ibbott, M Kerr, R Amos, and O Mawlawi
J Cho, G Ibbott, M Gillin, C Gonzalez-Lepera, U Titt and O Mawlawi
Kasey Etreni BSc., MRT(T), RTT, CTIC
6th European ALARA Network Workshop Madrid, oct. 23rd 2002
Electron Beam Therapy.
Very High Energy Electron for Radiotherapy Studies
A system of dosimetric calculations
Development and characterization of the Detectorized Phantom for research in the field of spatial fractionated radiation therapy. D. Ramazanov, V. Pugatch,
Radiosurgical Management of Brain Metastases
Ch 10. A System of Dosimetric Calculations
APPLICATION TO THE HADROTHERAPY FOR OCULAR MELANOMAS
Innovations in the Radiotherapy of Non–Small Cell Lung Cancer
Hot and cold spots are common problems associated with planning:
GHG meeting at ESTRO36 May, 2017
Planning techniques of proton boost
Principles and Practice of Radiation Therapy
Presentation transcript:

Научно-практический центр протонной лучевой терапии и радиохирургии (Москва-Дубна) A SYSTEM FOR MEASUREMENT OF A THERAPEUTIC PROTON BEAM DOSE DISTRIBUTION Agapov Alexey Medico-Technical Complex of Laboratory for Nuclear Problems Медико-Технический Комплекс ОИЯИ

Proton Therapy Facility Situation in Russia Научно-практический центр протонной лучевой терапии и радиохирургии (Москва-Дубна) Proton Therapy Facility Situation in Russia Today, radiotherapy applies in 70% of all oncological treatment cases. For about 30% of them the proton therapy is the best technique. Three centers of proton beam therapy based on physical accelerators exist in Russia: ITHEP (Moscow) PNPI (St.Peterburg) JINR (Dubna) Development of new treatment methods is the first step to creation of the specialized centers in Russia

Comparison of depth-dose distributions of photon and proton Научно-практический центр протонной лучевой терапии и радиохирургии (Москва-Дубна) Comparison of depth-dose distributions of photon and proton Protons have an advantage over photons: they allow delivering a maximum dose to the deep located target (tumour). This is especially important for some kind of tumours, e. g., brain tumours. Медико-Технический Комплекс ОИЯИ

Comparison of depth-dose distributions of photon and proton Научно-практический центр протонной лучевой терапии и радиохирургии (Москва-Дубна) Comparison of depth-dose distributions of photon and proton Single direction of irradiation Photon beam Proton beam Медико-Технический Комплекс ОИЯИ

Spread-out Bragg peak (SOBP) Научно-практический центр протонной лучевой терапии и радиохирургии (Москва-Дубна) Spread-out Bragg peak (SOBP) SOBP A range-modulating device called a ridge filter produces a spread-out Bragg peak which is a depth span of a constant biologically effective dose, to cover the maximum width of the target.

Медико-Технический Комплекс ОИЯИ Научно-практический центр протонной лучевой терапии и радиохирургии (Москва-Дубна) Range of proton beam The energy of the medical proton beam is 150 MeV in treatment room (after decelerating). 150 MeV  16cm range in human tissue Медико-Технический Комплекс ОИЯИ

Technique in proton therapy 3D Conformal Proton Therapy Technique Научно-практический центр протонной лучевой терапии и радиохирургии (Москва-Дубна) Technique in proton therapy 3D Conformal Proton Therapy Technique Field  projected target contour (by Collimator) Range  target distal surface (by Bolus and Degrader) SOBP  max target thickness (by Ridge Filter) That method has one disadvantage – healthy tissue fall into 30% “tail” of dose distribution (90-100% if use a single field of irradiation) Медико-Технический Комплекс ОИЯИ

Technique in proton therapy Dynamic Conformal Irradiation Technique Научно-практический центр протонной лучевой терапии и радиохирургии (Москва-Дубна) Technique in proton therapy Dynamic Conformal Irradiation Technique Longitudinally divide the target  slices. Conform thin layer of SOBP (minipeak) to each slice  variable SOBP. The base of work of RS-MLC system consists of irradiation layer-by layer of all tumor volume. This technique makes the dose in “tail” field near the tumor smaller. Медико-Технический Комплекс ОИЯИ

Dynamic Irradiation System Научно-практический центр протонной лучевой терапии и радиохирургии (Москва-Дубна) Dynamic Irradiation System In the dynamic irradiation method, a target volume is virtually divided into thin layers in the depth direction with using new devices as a Multi-Leaf Collimator and Dynamic Range Shifter and those individual layers are treated sequentially with irradiations with a common small SOBP, different beam ranges, and conformal fields. Медико-Технический Комплекс ОИЯИ

Equipment for Dynamic Irradiation System: Multi-Leaf Collimator (MLC) Научно-практический центр протонной лучевой терапии и радиохирургии (Москва-Дубна) Equipment for Dynamic Irradiation System: Multi-Leaf Collimator (MLC) MLC equipped with 60 pairs of leaves has been installed on beam axis. MLC can change aperture of proton beam automatically. Leaf material – steel Number of leaves - 60 Max field size – 100x100 mm Height of one leaf – 2,9mm Individual leaf travel – 100mm Average transmission 3% max Медико-Технический Комплекс ОИЯИ

Equipment for Dynamic Irradiation System: Dynamic Range Shifter (RS) Научно-практический центр протонной лучевой терапии и радиохирургии (Москва-Дубна) Equipment for Dynamic Irradiation System: Dynamic Range Shifter (RS) To change the energy of the therapeutic proton beam step-by-step, the dynamic range shifter is used. RS consist of two plexeglas wedges, step motor, worm-gear and two independent positioning detector. Material of degrader – plexiglas Max thickness on the beam axis – 108mm(H2O) Output scattering angle of about 17,0mrad or 1,0degree Медико-Технический Комплекс ОИЯИ

Медико-Технический Комплекс ОИЯИ Научно-практический центр протонной лучевой терапии и радиохирургии (Москва-Дубна) Equipment for Dynamic Irradiation System: The Device for measurement of a therapeutic proton beam dose distribution The Device for the proton beam energy control and measurement of its depth-dose curve. The main elements: water phantom for maximum square aperture of proton beam 100*100mm and one axis moving semiconductor detector with maximum travel by 300mm for 200MeV proton beam. Example of measurement. Depth-dose curves of different depths in water phantom. Медико-Технический Комплекс ОИЯИ

Clinical Effectiveness (expected results) Научно-практический центр протонной лучевой терапии и радиохирургии (Москва-Дубна) Clinical Effectiveness (expected results) * Kanematsu et al.: Treatment planning for the layer-stacking irradiation system. Dose distribution for a tumor in the bone and soft tissue region*; Target contour and the isodose lines are overloaded on the patient CT image for (a) the dynamic irradiation and (b) the conventional irradiation. The yellow line shows the target contour while the isodose lines are in colors of the corresponding dose-percentage numbers shown. Generally effective for large target volume single or a few beam directions small organ motion Медико-Технический Комплекс ОИЯИ

Медико-Технический Комплекс ОИЯИ Научно-практический центр протонной лучевой терапии и радиохирургии (Москва-Дубна) Conclusion: Improvement of dose distribution is expected with the dynamic irradiation method, though the significance may depend on size, shape, location of the tumor, and number of beam directions used to treat the patient. We expect that the dynamic irradiation method will be routinely used at Medico-Technical Complex JINR in a addition with the conventional method. In general, addition of the dynamic irradiation method should improve conformity of radiotherapy. We expect the commissioning of the dynamic delivery system in the near future. Медико-Технический Комплекс ОИЯИ