E. Reimer, U. Cubasch, A. Claußnitzer, I. Langer P. Névir Institut für Meteorologie Freie Universität Berlin Statistical-dynamical methods for scale dependent.

Slides:



Advertisements
Similar presentations
ALARO-0 at ZAMG Experiences, verification, identified problems, ….
Advertisements

Quantitative evaluation of regional precipitation forecasts using multi-dimensional remote sensing observations (QUEST) Nicole van Lipzig a, Susanne Crewell.
Medium-range Ensemble Streamflow forecast over France F. Rousset-Regimbeau (1), J. Noilhan (2), G. Thirel (2), E. Martin (2) and F. Habets (3) 1 : Direction.
JMA Takayuki MATSUMURA (Forecast Department, JMA) C Asia Air Survey co., ltd New Forecast Technologies for Disaster Prevention and Mitigation 1.
Introduction Irina Surface layer and surface fluxes Anton
The COSMO-LEPS system at ECMWF
Institut für Meteorologie und Klimatologie Universität Hannover
The University of Reading Helen Dacre AGU Dec 2008 Boundary Layer Ventilation by Convection and Coastal Processes Helen Dacre, Sue Gray, Stephen Belcher.
The University of Reading Helen Dacre AMS 2010 Air Quality Forecasting using a Numerical Weather Prediction Model ETEX Surface Measurement Sites.
The University of Reading Helen Dacre UM user 2009 Forecasting the transport of pollution using a NWP model ETEX Surface Measurement Sites.
Dynamical and Microphysical Evolution of Convective Storms (DYMECS) University: Robin Hogan, Bob Plant, Thorwald Stein, Kirsty Hanley, John Nicol Met Office:
Anthony Illingworth, + Robin Hogan, Ewan OConnor, U of Reading, UK and the CloudNET team (F, D, NL, S, Su). Reading: 19 Feb 08 – Meeting with Met office.
Radar/lidar observations of boundary layer clouds
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
Robin Hogan Ewan OConnor Damian Wilson Malcolm Brooks Evaluation statistics of cloud fraction and water content.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
High resolution LMK-simulations (1 km) for extreme precipitation events in southern Germany J.W. Schipper Institute for Meteorology and Climate Research,
Institut für Physik der Atmosphäre Christian Keil Institut für Physik der Atmosphäre DLR Oberpfaffenhofen Germany Forecast Quality Control Applying an.
High Resolution MOS Forecasts Based on a Low Resolution Model Dipl.-Met. Klaus Knüpffer, 28.Sep 2009 OUTLINE 1. MOS reduces 50% of the error variance of.
Production of a multi-model, convective- scale superensemble over western Europe as part of the SESAR project PHY-EPS Workshop, June 19 th, 2013 Jeffrey.
1 00/XXXX © Crown copyright Carol Roadnight, Peter Clark Met Office, JCMM Halliwell Representing convection in convective scale NWP models : An idealised.
Chapter 13 – Weather Analysis and Forecasting
Integrated Profiling at the AMF
Marc Schröder et al., FUB BBC2 Workshop, De Bilt, 10.´04 Problems related to absorption dependent retrievals and their validation Marc Schröder 1, Rene.
Use of Lidar Backscatter to Determine the PBL Heights in New York City, NY Jia-Yeong Ku, Chris Hogrefe, Gopal Sistla New York State Department of Environmental.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Object-Oriented Best Member Selection in a Regional Ensemble Forecasting System Christian.
Introduction to data assimilation in meteorology Pierre Brousseau, Ludovic Auger ATMO 08,Alghero, september 2008.
Enhancement of Satellite-based Precipitation Estimates using the Information from the Proposed Advanced Baseline Imager (ABI) Part II: Drizzle Detection.
Peters Gerhard, Fisher Bernd and Andersson Tage. Boreal Environment Research: 7, , (2002) Rain Observations with a vertically looking Micro Rain.
1 McGill University Department of Civil Engineering and Applied Mechanics Montreal, Quebec, Canada.
Institut für Physik der Atmosphäre Institut für Physik der Atmosphäre Modelisation a meso-echelle au IPA-DLR : Des eclairs au trafic aérien Mesoscale Modeling.
Analyze and interpret data from weather conditions, weather maps, satellites, and radar to predict local weather patterns and conditions.
TRMM Tropical Rainfall Measurement (Mission). Why TRMM? n Tropical Rainfall Measuring Mission (TRMM) is a joint US-Japan study initiated in 1997 to study.
Meteorological Driver for CTM Freie Universität Berlin Institut für Meteorologie Eberhard Reimer.
Clouds and Precipitation. Cloud Naming Prefix indicates height – Cirro  high, 5-13 km – Alto  middle, 2-5 km – (none)  low, 0-2 km Name for appearance.
Predicting lightning density in Mediterranean storms based on the WRF model dynamic and microphysical fields Yoav Yair 1, Barry Lynn 1, Colin Price 2,
Atmospheric structure from lidar and radar Jens Bösenberg 1.Motivation 2.Layer structure 3.Water vapour profiling 4.Turbulence structure 5.Cloud profiling.
Diplomanden-Doktoranden-Seminar Bonn – 18. Mai 2008 LandCaRe 2020 Temporal downscaling of heavy precipitation and some general thoughts about downscaling.
Quantitative evaluation of regional precipitation forecasts for Belgium using multi-dimensional remote sensing observations (QUEST-B) Nicole van Lipzig.
A Radar Data Assimilation Experiment for COPS IOP 10 with the WRF 3DVAR System in a Rapid Update Cycle Configuration. Thomas Schwitalla Institute of Physics.
1 GOES-R AWG Hydrology Algorithm Team: Rainfall Probability June 14, 2011 Presented By: Bob Kuligowski NOAA/NESDIS/STAR.
3 October th EWGLAM meeting, Ljubljana1 Some developments at ECMWF during 2005 Mariano Hortal ECMWF.
1 GOES-R AWG Hydrology Algorithm Team: Rainfall Potential June 14, 2011 Presented By: Bob Kuligowski NOAA/NESDIS/STAR.
Towards an object-oriented assessment of high resolution precipitation forecasts Janice L. Bytheway CIRA Council and Fellows Meeting May 6, 2015.
DYMECS: Dynamical and Microphysical Evolution of Convective Storms (NERC Standard Grant) University of Reading: Robin Hogan, Bob Plant, Thorwald Stein,
The three-dimensional structure of convective storms Robin Hogan John Nicol Robert Plant Peter Clark Kirsty Hanley Carol Halliwell Humphrey Lean Thorwald.
The 2nd International Workshop on GPM Ground Validation TAIPEI, Taiwan, September 2005 GV for ECMWF's Data Assimilation Research Peter
Meteorological Data Analysis Urban, Regional Modeling and Analysis Section Division of Air Resources New York State Department of Environmental Conservation.
Schematic diagram of the convective system life cycle size evolution Lifetime=  (A e Initiation ) Mass flux or condensation process in the initiation.
Development of a one-dimensional version of the Hirlam-model in Sweden Background: This model has been run operationally for about nine years now. Mainly.
A Cloud Resolving Modeling Study of Tropical Convective and Stratiform Clouds C.-H. Sui and Xiaofan Li.
Feature-based (object-based) Verification Nathan M. Hitchens National Severe Storms Laboratory.
Meteorologisches Institut der Universitat Munchen A shallow convection case from BBC: Results from the WMO international cloud modelling workshop Nicole.
Kick-Off-Treffen PQP 23./24. Oktober Bonn QUEST Partnership  Susanne Crewell, Thorsten Reinhardt, University of Cologne (UC)  Jürgen Fischer, Anja Hünerbein,
Page 1© Crown copyright 2005 Met Office Verification -status Clive Wilson, Presented by Mike Bush at EWGLAM Meeting October 8- 11, 2007.
Joint SRNWP/COST-717 WG-3 session, Lisbon Stefan Klink Data Assimilation Section Early results with rainfall assimilation.
Page 1© Crown copyright 2005 DEVELOPMENT OF 1- 4KM RESOLUTION DATA ASSIMILATION FOR NOWCASTING AT THE MET OFFICE Sue Ballard, September 2005 Z. Li, M.
Overview of WG5 activities and Conditional Verification Project Adriano Raspanti - WG5 Bucharest, September 2006.
AQUARadar Identification of temporally stable Z-R relationships using measurements of micro-rain radars M. Clemens (1), G. Peters (1), J. Seltmann (2),
MODELING OF SUBGRID-SCALE MIXING IN LARGE-EDDY SIMULATION OF SHALLOW CONVECTION Dorota Jarecka 1 Wojciech W. Grabowski 2 Hanna Pawlowska 1 Sylwester Arabas.
Remote sensing and modeling of cloud contents and precipitation efficiency Chung-Hsiung Sui Institute of Hydrological Sciences National Central University.
A physical initialization algorithm for non-hydrostatic NWP models using radar derived rain rates Günther Haase Meteorological Institute, University of.
Atmospheric profile and precipitation properties derived from radar and radiosondes during RICO Louise Nuijens With thanks to: Bjorn Stevens (UCLA) Margreet.
A Case Study of Decoupling in Stratocumulus Xue Zheng MPO, RSMAS 03/26/2008.
COSMO model simulations for COPS IOP 8b, 15 July 2007 Jörg Trentmann, Björn Brötz, Heini Wernli Institute for Atmospheric Physics, Johannes Gutenberg-University.
1 Application of MET for the Verification of the NWP Cloud and Precipitation Products using A-Train Satellite Observations Paul A. Kucera, Courtney Weeks,
Joint MAP D-PHASE Scientific Meeting - COST 731 mid-term seminar, May 2008, Bologna. ErgebnissErgebniss : Long-Term Evaluation of COSMO-DE and COSMO-EU.
Winter storm forecast at 1-12 h range
Development of a three-dimensional short range forecast model
Preliminary validation results of the prognostic 3d-TKE-scheme
Presentation transcript:

E. Reimer, U. Cubasch, A. Claußnitzer, I. Langer P. Névir Institut für Meteorologie Freie Universität Berlin Statistical-dynamical methods for scale dependent model evaluation and short term precipitation forecasting (STAMPF / FU-Berlin)

Separation of stratiform and convective precipitation and objective analysis combing WMO observations, rain gauge data and Meteosat-8 cloud data. Analyse of (convective) precipitation by high resolution data from Berlin rain gauge stations n combination to satellite data and radar data. Process-oriented dynamical evaluation of precipitation forecasts using the Dynamic State Index (DSI) Statistical diagnostics of precipitation fields by means of scaling exponents, or Shannon`s information entropy Participation in campaign COPS/GOP in 2007 in Southwest Germany and Germany The central focus of this project is a scale dependent evaluation of precipitation forecasts of the LMK / LME using dynamical, and statistical parameters as well as cloud properties.

Convective and stratiform cloud types Separation of cloud types for convective and stratiform precipitation analysis 1. cumulus 2. cumulonimbus cumulus mediocris cumulonimbus calvus cumulus congestus cumulonimbus capilatus cumulus and stratocumulus (weight by 33%) 3. stratiform cumulus and stratocumulus (weight by 67%) stratus nebulosus stratus fractus nimbostratus StratusNimbostratusCumulonimbus

Cloud classification from Meteosat-7 data for 12. August UTC

Precipitation median for cloud classes derived from Meteosat and synoptic observations Precipitation [mm/h] > 7 cumulus cumulonimbus cumulus (WMO-type 8) stratusfractus stratus Stratocumulus (WMO-type altocumulus Altocumulus with alto- /nimbostratus

Interpolationscheme for precipitation analysis Precipitation scheme using simple linear Interpolation: f 0 = precipitation amount [mm/h] at Gridpoint g i = Weight f i = precipitation amount from observation w 0 = cloud weight t gridpoint w i = cloud weight at observation site di distance between gridpoint r 0 and observation r i and w is the weight (shown above) next step: statistical analysis scheme

Beispiel einer Niederschlagsanalyse vom Niederschlagssumme Niederschlagswahr- Niederschlagssumme ohne Satellitenkorrektur scheinlichkeit aus Meteosat mit Satellitenkorrektur

Process-oriented dynamical evaluation with Dynamic State Index (DSI) The DSI locally combines information from energy (B), ERTELs potential vorticity (Π) and entropy (θ). DSI describes all non-stationary / diabatic processes! Result: High correlation (40-60%) between DSI² and LM-precipitation shows, that the DSI is a dynamical threshold parameter for rainfall processes. Threshold: stationary, adiabatic solution of the primitive equations. Workstep: Investigation of the vertically integrated DSI-field, including information of the vertical humidity profiles and liquid water content. Cooperation with QUEST Correlation: DSI² / Precipitation area mean from LM-output data

Statistical evaluation of precipitation through scaling exponent Scaling exponent α is a statistical parameter which indicates probability of extreme precipitation. Smaller values of α characterise distributions with high intensity tails. Cumulonimbus α = 1.21α = 1.84 Nimbostratus α = 2.13α = 2.10 Stratus α = 2.48α = 3.0 Result: Workstep: Further investigation of extreme precipitation (temporal resolution of minutes) Blackforest Brandenburg α Blackforest < α Brandenburg, more extrem values in the Blackforest area

Convective rain intensity versus duration obeys a power law! Result: Explanation using Turbulence Theory of Kolmogorov and Richardson Workstep: Testing the hypothesis that the turbulent momentum flux (friction velocity), the mixing ratio r, energy dissipation and accelerations determine the maximum rain intensity in convective cloud layers (COPS).

5min - Messungen

Tagesmessungen

Niederschlagssummen (mm) vom Analyse Tagessumme des Niederschlags Monatssumme des Niederschlags für den 12. August 2002

Arbeiten und Aussicht Weitere Aufbereitung der Berliner Niederschlagsdaten 2006 und 2007 Kontrolle der Niederschlagsmessungen über 5-Minuten- und Tagessummen Verwendung der Radarechos für die Analyse der 5-Minutensummen im 500m bis 1km Gitter Auswertung der Intensitäten für verschiedene Zeitintervalle Teilnahme an GOP Berücksichtigung der Windprofile aus dem LMK und Beobachtungen Einbeziehung von Niederschlagsprofilen vom Vertikalradar (Peters, Hamburg) für 2007 Vergleich der Messungen und Radardaten mit LMK (2,8km Gitter) des DWD für 2002 jetzt und 2007

Danke

12 August UTC 25 km1 km / 500 m 7 km 3-hourly rainfall (WMO data)hourly rainfall (WMO data)Rainfall network of Berlin (based on minutely data) Scale Dependent Analysis of Precipitation convective stratiform Mean absolute error year 2002 (LM vs. OBS) WMO synoptic observations Satellite data (Meteosat, NOAA) 60 rain gauges in Berlin (5 min) 76 rain gauges in Berlin (1 day) MAE (mm/h) Data Basis

Mean absolute error (2004) for different forecast period (LM forecast- FUB analysis) MAE of convective precipitation is greater than stratiform precipitation Total precipitation is dominated by the convective precipitation

Blackforest Brandenburg stratiform convective MAE 2004 (Juni, Juli, August) for the Blackforest and Brandenburg overestimated by LM Mean = [mm/1h] Mean = [mm/1h] Mean = [mm/1h] Mean = [mm/1h]

DSI: 00 UTC +12h Rain: 00 UTC +12h Analysis chart: Workstep: Exploring the precipitation forecast skill of the DSI by comparison the correlation of the DSI on different isentropic levels with LMK precipitation forecasts. / This workstep will also be extended to the special case studies. Result: Predicted DSI-field has the same filament-like precipitation structures. DSI-forecasts as a new precipitation forecast tool