PSI spectroscopy of hydrocarbons and erosion in Pilot-PSI Gerard van Rooij Pilot & Magnum team: J. Westerhout, W.A.J. Vijvers, R.S. Al, H.J.N. van Eck,

Slides:



Advertisements
Similar presentations
Electrodes and PROTO-PINCH Presented by A. Mancuso PROTO-SPHERA Workshop - Frascati, 18-19/03/2002 Associazione Euratom-ENEA sulla Fusione.
Advertisements

ERO modelling of local 13 C deposition at the outer divertor of JET M. Airila, L. Aho-Mantila, S. Brezinsek, P. Coad, A. Kirschner, J. Likonen, D. Matveev,
FOM-Institute for Plasma Physics Rijnhuizen Association Euratom-FOM T E CT E C T E CT E C Carbon Chemical Erosion Yield Experiments in Pilot-PSI Jeroen.
Institute for Plasma Physics Rijnhuizen D retention in W and mixed systems in Pilot-PSI G. De Temmerman a, K. Bystrov a, L. Marot b, M. Mayer c, J.J. Zielinski.
T E CT E C Euratom-FOM Erosion and deposition of C in Pilot-PSI Gerard van Rooij The Pilot-PSI and Magnum-PSI team: J. Westerhout, G. Wright, W.A.J. Vijvers,
Analysis of samples exposed to Pilot–PSI Plasma P. Paris, A. Hakola, K. Bystrov, G. De Temmerman, M. Aints, I. Jõgi, M. Kiisk, J. Kozlova, M. Laan, J.
17. April 2015 Mitglied der Helmholtz-Gemeinschaft Application of a multiscale transport model for magnetized plasmas in cylindrical configuration Workshop.
1 CENTER for EDGE PLASMA SCIENCES C E PS Status of Divertor Plasma Simulator – II (DiPS-II) 2 nd PMIF Workshop Sep. 19, 2011 Julich, Germany H.-J. Woo.
Plasma-Electrode interactions in high- current-density plasmas Edgar Choueiri (Princeton) & Jay Polk (NASA-JPL) 3.
1 ITPA - DSOL - TorontoS. Brezinsek TEC Hydrocarbon spectroscopy on EU tokamaks S. Brezinsek on behalf of the EU task force for Plasma-Wall Interaction.
Atomic Emission Spectroscopy
TEST GRAINS AS A NOVEL DIAGNOSTIC TOOL B.W. James, A.A. Samarian and W. Tsang School of Physics, University of Sydney NSW 2006, Australia
Y. Ueda, M. Fukumoto, H. Kashiwagi, Y. Ohtsuka (Osaka University)
Effects of active mode control on edge profiles and plasma-surface interactions in T2R H. Bergsåker with contributions from S. Menmuir, M. Henriksson et.
Integrated Effects of Disruptions and ELMs on Divertor and Nearby Components Valeryi Sizyuk Ahmed Hassanein School of Nuclear Engineering Center for Materials.
Spatial profiles of copper atom density in a Cu/Ne hollow cathode discharge P. Hartmann*, T.M. Adamowicz**, E. Stoffels and W.W. Stoffels, Department of.
K.Umstadter –-Laser+D on W PISCES Effects of transient heating events on W PFCs in a steady-state divertor-plasma environment Karl R. Umstadter, R. Doerner,
HEAT TRANSPORT andCONFINEMENTin EXTRAP T2R L. Frassinetti, P.R. Brunsell, M. Cecconello, S. Menmuir and J.R. Drake.
49th Annual Meeting of the Division of Plasma Physics, November , 2007, Orlando, Florida Ion Temperature Measurements and Impurity Radiation in.
Trilateral Euregio Cluster Simultaneous observation of CD and C 2 in the near UV region in the JET divertor spectral window for the observation of CD and.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Introduction to Plasma- Surface Interactions G M McCracken Hefei, October 2007.
PREPARATION OF ZnO NANOWIRES BY ELECTROCHEMICAL DEPOSITION
Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment G.M. Wright University of Wisconsin-Madison, FOM – Institute.
1 Greenwald FESAC, Aug. 07 Whyte First Wall Issues: ITER to DEMO D.G. Whyte, B. Lipschultz Plasma Science & Fusion Center, MIT, Cambridge USA Greenwald.
Profile Measurement of HSX Plasma Using Thomson Scattering K. Zhai, F.S.B. Anderson, J. Canik, K. Likin, K. J. Willis, D.T. Anderson, HSX Plasma Laboratory,
New Progress of High Current Gasdynamic Ion Source
On the use of LIBS to determine the fractional abundances of carbon ions in the laser plasma plume M. Naiim Habib 1, Y. Marandet 2, L. Mercadier 3, Ph.
R. P. Doerner, 2 nd PMIF Meeting, Juelich, Sept , 2011 Plasma interactions with Be surfaces R. P. Doerner, D. Nishijima, T. Schwarz-Selinger and.
HiCAT- a Novel Diagnostic for Mass Loss and Species Composition Analysis Goal: Provide In-situ, real time characterization of ablated/ vaporized materials.
Depth-profiling and thermal desorption of hydrogen isotopes for plasma facing carbon tiles in JT-60U (Long term hydrogen retention) T. Tanabe, Kyushu University.
J.N. Brooks, A. Hassanein, T. Sizyuk, J.P. Allain
Electronic Transition of Ruthenium Monoxide Na Wang, Y. W. Ng and A. S.-C. Cheung Department of Chemistry The University of Hong Kong.
Dust formation : speculated mechanism N i = density of particles with a size i R = nucleation rate (estimated from the chemical kinetics model) G = coagulation/agglomeration.
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
Beam screens in IT phase 1
Effects of tungsten surface condition on carbon deposition
CHI Run Summary for March 10-12, 31 & April 9, 2008 Flux savings from inductive drive of a Transient CHI started plasma (XP817) R. Raman, B.A. Nelson,
Photo physics and photo chemistry of ice films on graphite Department of Applied Physics Chalmers and Göteborg University Dinko Chakarov Johan Bergeld.
Gregory ClarkeTechnological Plasmas Research Group Time resolved diagnostics for pulsed magnetron plasmas.
CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Presentation on prioritisation of DIVSOL proposals for M9 Andrew Kirk.
1 US PFC Meeting, UCLA, August 3-6, 2010 DIONISOS: Upgrading to the high temperature regime G.M. Wright, K. Woller, R. Sullivan, H. Barnard, P. Stahle,
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor J.N. Brooks, J.P. Allain Purdue University PFC Meeting MIT,
L. Moser – FuseNet PhD Event 2015 – Prague Influence of high magnetic field on plasma sputtering of ITER First Mirrors L. Moser, L. Marot, R. Steiner and.
Evaluation of the Cu atomic density during sputter deposition process with optical emission spectroscopy Takeo Nakano, Kouji Tanaka and Shigeru Baba Dept.
MOLIBDENUM MIRRORS WITH COLUMN NANOGRAIN REFLECTING COATING AND EFFECT OF ION- STIMULATED DIFFUSION BLISTERRING RRC «Кurchatov Institute» А.V. Rogov, К.Yu.Vukolov.
RGS observations of cool gas in cluster cores Jeremy Sanders Institute of Astronomy University of Cambridge A.C. Fabian, J. Peterson, S.W. Allen, R.G.
ERO code development A. Kirschner M. Airila, D. Borodin, S. Droste, C. Niehoff  The ERO code  ERO code management  Modelling of CH 4 puffing in ASDEX.
Laboratory photo-ionized plasma David Yanuka. Introduction  Photo-ionized plasmas are common in astrophysical environments  Typically near strong sources.
52nd Annual Meeting of the Division of Plasma Physics, November , 2010, Chicago, Illinois 5-pin Langmuir probe configured to measure floating potential.
HISAKI mission – ひさき – Chihiro Tao 1,2, Nicolas Andre 1, Hisaki/EXCEED team 1. IRAP, Univ. de Toulouse/UPS-OMP/CNRS 2. now at NICT
Global MHD Simulations of State Transitions and QPOs in Black Hole Accretion Flows Machida Mami (NAOJ) Matsumoto Ryoji (Chiba Univ.)
56 th Annual Meeting of the Division of Plasma Physics. October 27-31, New Orleans, LA Using the single reservoir model [3], shown on right, to:
Dominik Schega (1), S.S.Abdullaev (1), M.Clever (1), K.H.Finken (1), M.Jakubowski (2), Y.Kikuchi (3), M.Lehnen (1), O.Schmitz (1), G.Sewell (4), H.Stoschus.
Mg Films Grown by Pulsed Laser Deposition as Photocathodes: QE and surface adsorbates L. Cultrera INFN – National Laboratories of Frascati.
1 ITC-22, November 2012, Toki, Japan 1 Modelling of impurity transport, erosion and redeposition in fusion devices: applications of the ERO code A. Kirschner.
Saturn Magnetosphere Plasma Model J. Yoshii, D. Shemansky, X. Liu SET-PSSD 06/26/11.
Member of the Helmholtz Association Meike Clever | Institute of Energy Research – Plasma Physics | Association EURATOM – FZJ Graduiertenkolleg 1203 Dynamics.
The Performance Of A Continuous Supersonic Expansion Discharge Source
The Performance Of A Continuous Supersonic Expansion Discharge Source
Mechanisms for losses during Edge Localised modes (ELMs)
Temperature Measurements of Limiter Surfaces at High Heat Flux in the HT-7 Tokamak H. Lin, X.Z. Gong, J. Huang, J.Liu, B. Shi, X.D. Zhang, B.N. Wan,
Preliminary study for Soft X-ray Spectroscopy in VEST
Syedah Sadaf Zehra DCU and UNIPD Supervisors
SIMULATIONS OF HIGH-PRESSURE CATHODIC
Characteristics of Edge Turbulence in HSX
Valeryi Sizyuk Ahmed Hassanein School of Nuclear Engineering
Analysis of samples exposed to Pilot–PSI Plasma
The Experimental Study on Vacuum Breakdowns by Optical Diagnosis
Presentation transcript:

PSI spectroscopy of hydrocarbons and erosion in Pilot-PSI Gerard van Rooij Pilot & Magnum team: J. Westerhout, W.A.J. Vijvers, R.S. Al, H.J.N. van Eck, B. de Groot, W.R. Koppers, H.J. van der Meiden, P.R. Prins, M.J. van de Pol, P.H.M. Smeets, J. Scholten, W.J. Goedheer, A.W. Kleyn, N.J. Lopes Cardozo S. Brezinsek, FZJ Jülich R. Engeln, D.C. Schram, Eindhoven University of Technology D.G. Whyte, MIT FOM-Institute for Plasma Physics Rijnhuizen Association Euratom-FOM

2 Pilot-PSI: experimental Arc Coils Thomson Scattering Target Spectroscopy Coils Arc Thomson Scattering Spectroscopy H2H2 cathode anode plasma 0.55 m

3 Density and temperature near the target 532nm Scattered light analyzed spectrally and spatially resolved 17 mm Thomson Scattering at 17 mm from target

4 Parameter range at target realized in Pilot >10 23 H + /m 2 s>10 24 H + /m 2 s>10 25 H + /m 2 s  ion = 0.6· n e · c s,i (T e ) Experimental knobs: Source current & flow Vessel pressure Magnetic field Target potential

5 Target calorimetry confirms flux from n e,T e Measured in target cooling water: 1.0 kW  this is 10 MW/m 2 ! 100 s exposure = H + /m 2 !!! Integration of flux profile for B = 0.4 T gives total  ion :  ion = 3.2·10 20 H + /s  this is 40% of input gas flow! Flux corresponds to 1.0 kW power (assuming E ion +E diss +5/2 k(T e +T i ) )

6 Exposure of carbon to H + /m 2 Target 5mm x  30mm, fine grain, Carbon SGL Group, R 6650 Power to target cooling water: 0.9 kW Thomson scattering: n e = 9±1·10 19, T e = 4.0 ± 0.2 eV 100 sec exposure time Target grounded: 50 A net current Auger spectroscopy shows no target contamination IR spectrum indicates no excessive surface temp. Eroded crater < 5  m; agrees with Y chem and no redeposition (~4  m)

7 Y chem from spectroscopy spectrometer target HH HH CH (Hydkin) (ADAS) H

8 Pilot exposures compared to the Y chem curve To be considered:Calibration required by CH 4 puffing Surface temperature unknown

9 Conclusions Pilot-PSI offers >10 26 H + /m 2 exposures at n e up to 2·10 21 m -3 and T e up to 4 eV First Y chem determinations based on spectroscopy demonstrated for >10 24 H + /m 2 s; in line with literature