Deep-sea neutrino telescopes Prof. dr. Maarten de Jong Nikhef / Leiden University.

Slides:



Advertisements
Similar presentations
Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
Advertisements

Jan 2009 U. Katz: Astroparticle Physics 1 What is KM3NeT – the Vision  Future cubic-kilometre sized neutrino telescope in the Mediterranean Sea  Exceeds.
Kay Graf Physics Institute 1 University of Erlangen ARENA 2006 University of Northumbria June 28 – 30, 2006 Integration of Acoustic Neutrino Detection.
Status of the ANTARES Neutrino-Telescope Alexander Kappes Physics Institute University Erlangen-Nuremberg for the ANTARES Collaboration WIN´05, 6.–11.
A. BELIAS, NESTOR Institute, Pylos, Greece TeVPA 2009, July 13-17, SLAC1 KM3NeT, a deep sea neutrino telescope in the Mediterranean Sea KM3NeT objectives.
ANTARES aims, status and prospects Susan Cartwright University of Sheffield.
P. Sapienza, NOW 2010 The KM3NeT project  Introduction & Main objectives  The KM3NeT Technical Design Report  Telescope physics performance  New developments.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
By E. Anassontzis, A. Belias, E. Kappos, K. Manolopoulos, P. Rapidis on behalf of the KM3NeT Collaboration.
Antares/KM3NeT M. de Jong. neutrinos  p Scientific motivation: – origin cosmic rays – birth & composition relativistic jets – mechanism of cosmic particle.
Paolo Musico on behalf of KM3NeT collaboration The Central Logic Board for the KM3NeT detector: design and production Abstract The KM3NeT deep sea neutrino.
Introduction to future synergy options Uli Katz ECAP, Univ. Erlangen Deep Ocean Cabled Observatories Amsterdam, May 2012.
All Regions Workshop #2, 5-7 Oct , Paris, France G. Riccobene – LNS / INFN The East Sicily Node Facilities Giorgio Riccobene INFN-LNS, Catania
KM3NeT IDM/TeVPA conference 23  28 June 2014, Amsterdam, the Netherlands Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino.
The ANTARES experiment is currently the largest underwater neutrino telescope and is taking high quality data since Sea water is used as the detection.
Paolo Piattelli - KM3NeTIAPS - Golden, 6-8 may 2008 KM3NeT: a deep-sea neutrino telescope in the Mediterranean Sea Paolo Piattelli - INFN/LNS Catania (Italy)
KM3NeT The Birth of a Giant V. Popa, KM3NeT Collaboration Institute for Space Sciences, Magurele-Bucharest, Romania.
Hanoi, Aug. 6-12, 2006 Pascal Vernin 1 Antares Status report P.Vernin CEA Saclay, Dapnia On behalf of the Antares collaboration P.Vernin
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
Petten 29/10/99 ANTARES an underwater neutrino observatory Contents: – Introduction – Neutrino Astronomy and Physics the cosmic ray spectrum sources of.
CEA DSM Irfu The ANTARES Neutrino Telescope A status report Niccolò Cottini on behalf of the ANTARES Collaboration 44 th Rencontres de Moriond February.
WP2 meeting, Oct 2006, CPPM Claudine Colnard - NIKHEF Claudine Colnard, Ronald Bruijn, Eleonora Presani, Siemen Meester, Paul Kooijman (presented by Maarten.
V.Bertin CPPM / ANTARES Coll. - Moriond ANTARES : A deep-sea 0.1 km² neutrino telescope Vincent Bertin - CPPM-Marseille on behalf of the Antares.
Data acquisition system for the Baikal-GVD neutrino telescope Denis Kuleshov Valday, February 3, 2015.
A sensor architecture for neutrino telescopes on behalf of the KM3NeT consortium Els de Wolf Thank you, Claudio!
ANTARES  Physics motivation  Recent results  Outlook 4 senior physicists, ~5 PhD students, ~5 technicians M. de Jong RECFA 23 September 2005.
Maintenance of the ANTARES deep-sea neutrino telescope 1 Marco Circella --- INFN Bari on behalf of the ANTARES Collaboration.
KM3NeT International Solvay Institutes 27  29 May 2015, Brussels, Belgium. Maarten de Jong Astro-particle and Oscillations Research with Cosmics in the.
The NEMO Project: Toward a km 3 Neutrino Telescope in the Mediterranean Sea M. Circella, INFN Bari NUPPAC-05, Nov The NEMO Project (NEutrino Mediterranean.
Disk WP-4 “Information Technology” J. Hogenbirk/M. de Jong  Introduction (‘Antares biased’)  Design considerations  Recent developments  Summary.
The ANTARES detector: background sources and effects on detector performance S. Escoffier CNRS Centre de Physique des Particules de Marseille on behalf.
Antares Slow Control Status 2007 International Conference on Accelerator and Large Experimental Physics Control Systems - Knoxville, Tennessee - October.
The ANTARES Project Sino-French workshop on the Dark Universe Stephanie Escoffier Centre de Physique des Particules de Marseille On behalf of the ANTARES.
The KM3NeT consortium ( - supported through the European Union's 6th framework programme in a 3-year Design Study - aims at the construction.
Time over Threshold electronics for an underwater neutrino telescope G. Bourlis, A.G.Tsirigotis, S.E.Tzamarias Physics Laboratory, School of Science and.
Disk Towards a conceptual design M. de Jong  Introduction  Design considerations  Design concepts  Summary.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
VLV T – Workshop 2003 Read Out and Data Transmission Working Group Synchronous Data Transmission Protocol for NEMO experiment.
KM 3 Neutrino Telescope European deep-sea research infrastructure DANS – symposium Maarten de Jong.
Calibration of Under Water Neutrino Telescope ANTARES Garabed HALLADJIAN October 15 th, 2008 GDR Neutrino, CPPM, Marseille.
The Trigger and Data Acquisition System for the KM3NeT neutrino telescope Carmelo Pellegrino Tommaso Chiarusi INFN - Sezione di Bologna VLVnT 2015 | Rome,
Development of combined sensors for UHE neutrino detection Alexander Enzenhöfer ARENA 2010 Nantes,
The sector of the Antares line to be deployed in the NEMO site Davide Piombo – INFN sez. Genova
STATUS AND PHYSICS GOALS OF KM3NET Paolo Piattelli P. Piattelli, ICHEP14 Valencia INFN – LNS, Catania (Italy)
Antares status and plans  Reminder  Project status  Plans M. de Jong.
Isabella Amore VLV T08, Toulon, France April 2008 International Workshop on a Very Large Volume Neutrino Telescope for the Mediterranean Sea Results.
Status and Perspectives of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration September.
Neutrino telescopes: ANTARES and KM3NeT Maarten de Jong Programme: Group composition (current): 6+2 staff, 4 post-doc, 4 PhD. Vidi 1, Veni 1+1.
KM3NeT M. de Jong Staff overleg 12 Mei  M. de Jong, P. Kooijman, G. v.d. Steenhoven, E. de Wolf (R. v. Dantzig, J. Engelen, P. de Witt Huberts,
M. Circella – ANTARES connectionINFN Comm. II, 5/6/2008 The ANTARES Connection Marco Circella --- INFN Bari 1.
Umberto Emanuele IFIC (CSIC-UV), Valencia (Spain) Status of Time Calibration System forKM3NeT.
Antares/KM3NeT M. de Jong. Antares  2000NL joined collaboration (3.3 M€)  2006 ‒ 2008construction  2006 ‒ todaydata taking 24h/day  2012MoU signed.
The Neutrino Telescope of the KM3NeT Deep-Sea Research Infrastructure Robert Lahmann for the KM3NeT Consortium Erlangen Centre for Astroparticle Physics.
Status report Els de Wolf Annual Meeting 2011, Nikhef.
Earth-Sea Science Junction Boxes
WP F/L Detection Unit Mechanical Structure and Deployment R. Papaleo 130/03/2011.
KM3NeT Neutrino conference 2-7 June 2014, Boston, U.S.A. Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino telescope in.
DOM developments Mini DOM PPM-DOM in Antares PPM future WP F-L.
IRFU The ANTARES Data Acquisition System S. Anvar, F. Druillole, H. Le Provost, F. Louis, B. Vallage (CEA) ACTAR Workshop, 2008 June 10.
Status Antares & KM3NeT SAC 2010 Maarten de Jong.
KM3NeT P.Kooijman Universities of Amsterdam & Utrecht for the consortium.
ANTARES Lessons learned from its completion
Deep-sea neutrino telescopes
On behalf of Patrick Lamare
P.Kooijman, UVA-GRAPPA, UU, Nikhef
Pasquale Migliozzi INFN Napoli
White Rabbit in KM3NeT Mieke Bouwhuis NIKHEF 9th White Rabbit Workshop
Els de Wolf 20 February 2012, Catania
Junction Boxes for KM3NeT
M.Bou-Cabo, J.A. Martínez.-Mora on behalf of the ANTARES Collaboration
Presentation transcript:

Deep-sea neutrino telescopes Prof. dr. Maarten de Jong Nikhef / Leiden University

contents  Neutrino astronomy  Antares ‒prototype  KM3NeT ‒next generation neutrino telescope  issues, ideas

neutrinos  p Scientific motivation: – origin cosmic rays – creation& composition relativistic jets – mechanism cosmic particle acceleration – composition dark matter neutrino telescope Why neutrinos? – no absorption – no bending Neutrino astronomy

1960 Markov’s idea:  range of muon  detect Cherenkov light  transparency of water Use sea water as target/detector

How? muon wavefron t ~few km ~100 m muon travels with speed of light (300,000 km/s) → ns (10 km neutrino interaction

General layout light detection transmission of (all) data data filter real-time event distribution shore station 3-5 km 800 m km 1-2 km >1000 km

Antares  1997‒2005 – R&D – site explorations – measurements of water properties  2005‒2008 – construction-operation  2008‒2017 – operation prototype neutrino telescope ‒ 100 persons ‒ 25 M€

~2.5 km 500 m 250 Atm. ~200x200 m 2 12 lines 25 storeys / line Antares

Hydrophone acoustic positioning 10” PMT photon detection Electronics readout titanium frame mechanical support Optical beacon timing calibration ~1 m Detection unit

Dutch industry Gb/s transceiver DC–DC converter passive cooling

PMT 100 Mb/s e/o Ethernet switch 1 Gb/s e/o optical fiber (21) DWDM filter optical fiber (4) 40 km 5x15 m 5‒25x15 m CPU FPGA container deep-sea network penetrator (3) connector (3) penetrator (2) wet-matable connector (2) 1 km (40) junction box

data filter time Ethernet switch off-shore on shore CPU data flow

data filter time Ethernet switch off-shore on shore CPU data flow

data filter time Ethernet switch off-shore on shore CPU data flow

Antares  deep-sea infrastructure – 1 km PMTs, hydrophones, ADCP, seismometers, etc. 10 kW, 1 GB/s – one main electro-optical cable 50 km, AC, 1 cupper conductor + sea return ‒network active multiplexing locally (Ethernet standard) passive multiplexing based on DWDM technology – low number of channels for reliability of offshore transceiver  stability) ‒operation 10 years (some maintenance’ data transmission signal recovery by amplification

KM3NeT  2005‒2008 – design study  2008‒2012 – preparatory phase  2013‒2017 – construction definitive neutrino telescope ‒ 300 persons ‒ 200 M€

31 x 3” PMT Optical module (camera) Electronics inside

deep-sea network j+1 j optical modulator laser receiver  integrate timing system (GHz = ns)  minimise offshore electronics DWDM shore station DWDM penetrator (1) wet-matable connector (1)

6 m Mechanical cable connection Data cable storage Mechanical cable storage Frame Optical module Mechanical holder Needs new deployment technique Storey 1Digital Optical Module=Dom 2Dom’s on 1 bar=Dom-bar 20Dom-bar’s on 1 tower=Dom tower

sudden Eddie currents Temperature Earth & Sea sciences France observatory food supply Bioluminescence short lived (rare) events dominate deep-sea life permanent observatory time profile

KM3NeT  deep-sea infrastructure – 10 km 3 >100,000 PMTs, hydrophones, ACDP, seismometers, etc. <100 kW, 100 GB/s – two main electro-optical cables 100 km, DC, 1 cupper conductor + sea return ‒network ‒PON, point-to-point + amplification ‒new Ethernet standard Precision-Time-Protocol (”White Rabbit”) ‒operation 10 years without maintenance

Issues, ideas, etc.

Deep-sea infrastructure  materials – containers (glass, Ti, Al)  mechanics – drag, deployment, etc.  cables – dry versus oil-filled – little experience with vertical orientation  wet-matable connectors – expensive (combined fiber and cupper wires) – bulky (problems with handling)  penetrators – source of single-point-failures (error propagation)

data taking & processing  network – high-bandwidth & long haul integration of data transmission & timing (PTP) – (real-time) data distribution monitoring archival offline analysis (astronomy, etc.) – external triggers satellites, other infrastructures  computing – (real-time) data processing algorithms (reduction of complexity & parallelization of problem) implementation (state-of-the-art OO-programming) hardware (multi-core, GPUs)

Fiber technology  data transmission – laser/[A]PD flexible (2 x transceiver = point-to-point link) active feedback loop (intrinsically instable power, ) non-negligible electrical power consumption – modulators wavelength, phase, intensity, polarization very low power reliable – amplification long-haul communication  Energy transmission – ?  sensor – e.g. Bragg reflectrometer as deep-sea hydrophones sensitivity  low weight…