Electromagnetic Oscillations and Alternating Current

Slides:



Advertisements
Similar presentations
Alternating-Current Circuits
Advertisements

Alternating Current Circuits and Electromagnetic Waves
Magnetism Alternating-Current Circuits
Alternating Current Circuits And Electromagnetic Waves Chapter 21.
Electromagnetic Oscillations and Alternating Current
Power I, VI, V I max  V max  I, VI, V I max AC Circuits use a similar definition of power as DC circuits. The one detail that need to be included.
Alternating Current Circuits
Physics 1502: Lecture 23 Today’s Agenda Announcements: –RL - RV - RLC circuits Homework 06: due next Wednesday …Homework 06: due next Wednesday … Maxwell’s.
Fig 33-CO, p Ch 33 Alternating Current Circuits 33.1 AC Sources and Phasors v = V max sint  = 2/T = 2f tt V max v = V max sint Phasor.
Lecture 20-1 Alternating Current (AC) = Electric current that changes direction periodically ac generator is a device which creates an ac emf/current.
Physics 121: Electricity & Magnetism – Lecture 13 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
Physics 1502: Lecture 24 Today’s Agenda Announcements: –Herschbach: Nobel Prize winner speaking Thursday »4:00PM in bio-physics building (BP-130 ?) Midterm.
Alternating Current Circuits
Copyright © 2009 Pearson Education, Inc. Lecture 10 – AC Circuits.
chapter 33 Alternating Current Circuits
Alternating Current Circuits
Chapter 32A – AC Circuits A PowerPoint Presentation by
Consider a long solenoid of cross-sectional area A, with number of turns N, and of length l. The flux is The magnitude of B is given by: Therefore, The.
Alternating Current Circuits
Fall 2008 Physics 121 Practice Problem Solutions 13 Electromagnetic Oscillations AC Circuits Contents: 121P13 - 2P, 3P, 9P, 33P, 34P, 36P, 49P, 51P, 60P,
Chapter 22 Alternating-Current Circuits and Machines.
Chapter 32 Inductance.
Electromagnetic Oscillations and Alternating Current
Ch – 35 AC Circuits.
Transformers Mechanical and Electrical Systems SKAA 2032
Lecture 18 RLC circuits Transformer Maxwell Electromagnetic Waves.
ARRDEKTA INSTITUTE OF TECHNOLOGY GUIDED BY GUIDED BY Prof. R.H.Chaudhary Prof. R.H.Chaudhary Asst.prof in electrical Asst.prof in electrical Department.
Alternating Current Circuits
Chapter 31 Electromagnetic Oscillations and Alternating Current Key contents LC oscillations, RLC circuits AC circuits (reactance, impedance, the power.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 24 Physics, 4 th Edition James S. Walker.
Alternating Current Circuits
1 Chapter An alternator 3 The Great Divide: 60 Hz vs 50 Hz  is an angular frequency.  =2  f where f is the frequency in Hertz (Hz) In the US.
Copyright © 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits.
Chapter 32 Inductance. Joseph Henry 1797 – 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one.
AC electric circuits 1.More difficult than DC circuits 2. Much more difficult than DC circuits 3. You can do it!
Chapter 32 Inductance. Self-inductance  A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying.
Alternating Current Circuits
Chapter 24 Alternating-Current Circuits. Units of Chapter 24 Alternating Voltages and Currents Capacitors in AC Circuits RC Circuits Inductors in AC Circuits.
1 Alternating Current Circuits Chapter Inductance CapacitorResistor.
CHAPTER 33) ALTERNATING-CURRENT CIRCUITS 33.1 : AC SOURCES AND PHASORS An ac circuit consists of circuit elements and a generator that provides athe alternating.
Enrollment no.: Abhi P. Choksi Anuj Watal Esha N. Patel Guidied by: M. K. Joshi, P.R.Modha A.D.PATEL.INSTITUTE.
Chapter 32 Inductance. Joseph Henry 1797 – 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one.
Electromagnetic Oscillations and Alternating Current Chapter 33.
Chapter 32 Inductance. Self-inductance Some terminology first: Use emf and current when they are caused by batteries or other sources Use induced emf.
L C LC Circuits 0 0 t V V C L t t U B U E Today... Oscillating voltage and current Transformers Qualitative descriptions: LC circuits (ideal inductor)
Inductance and AC Circuits. Mutual Inductance Self-Inductance Energy Stored in a Magnetic Field LR Circuits LC Circuits and Electromagnetic Oscillations.
ELECTRICAL CIRCUIT CONCEPTS
Copyright R. Janow – Spring 2015 Physics Electricity and Magnetism Lecture 14 - AC Circuits, Resonance Y&F Chapter 31, Sec The Series RLC.
Slide 1Fig 33-CO, p Slide 2Fig 33-1, p the basic principle of the ac generator is a direct consequence of Faraday’s law of induction. When.
Chapter 21: Alternating Current Circuits and EM Waves Resistors in an AC Circuits Homework assignment : 22,25,32,42,63  AC circuits An AC circuit consists.
Physics 212 Lecture 21, Slide 1 Physics 212 Lecture 21.
Chapter 31 Lecture 33: Alternating Current Circuits: II HW 11 (problems): 30.58, 30.65, 30.76, 31.12, 31.26, 31.46, 31.56, Due Friday, Dec 11. Final.
Chapter 8 Alternating Current Circuits. AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source An AC circuit.
Physics 1304: Lecture 18, Pg 1 AC Circuits  Physics 1304: Lecture 18, Pg 2 Lecture Outline l Driven Series LCR Circuit: General solution Resonance condition.
Physics Electricity and Magnetism Lecture 14 - AC Circuits, Resonance Y&F Chapter 31, Sec The Series RLC Circuit. Amplitude and Phase.
Physics 1202: Lecture 15 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, solutions.
Physics 212 Lecture 21 Resonance and power in AC circuits.
Copyright R. Janow – Fall 2015 Physics Electricity and Magnetism Lecture 14E - AC Circuits & Resonance I – Series LCR Y&F Chapter 31, Sec. 3 – 8.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Lecture 19-1 RL Circuits – Starting Current 2. Loop Rule: 3. Solve this differential equation τ=L/R is the inductive time constant 1.Switch to e at t=0.
Copyright R. Janow – Spring 2016 Physics Electricity and Magnetism Lecture 14 - AC Circuits, Resonance Y&F Chapter 31, Sec Phasor Diagrams.
Chapter 33 Alternating Current Circuits. Electrical appliances in the house use alternating current (AC) circuits. If an AC source applies an alternating.
Physics 213 General Physics Lecture Last Meeting: Self Inductance, RL Circuits, Energy Stored Today: Finish RL Circuits and Energy Stored. Electric.
Copyright © 2009 Pearson Education, Inc. Chapter 29 Electromagnetic Induction and Faraday’s Law.
Levitation above a Superconductor
Physics Electricity and Magnetism Lecture 14 - AC Circuits, Resonance Y&F Chapter 31, Sec Phasor Diagrams for Voltage and Current The Series.
An {image} series circuit has {image} , {image} , and {image}
Chapter 31 Electromagnetic Oscillations and Alternating Current
Lecture Outline Chapter 24 Physics, 4th Edition James S. Walker
Alternating Current Circuits
Presentation transcript:

Electromagnetic Oscillations and Alternating Current Chapter 31 Electromagnetic Oscillations and Alternating Current

31.2: LC Oscillations, Qualitatively: In RC and RL circuits the charge, current, and potential difference grow and decay exponentially. On the contrary, in an LC circuit, the charge, current, and potential difference vary sinusoidally with period T and angular frequency w. The resulting oscillations of the capacitor’s electric field and the inductor’s magnetic field are said to be electromagnetic oscillations.

31.2: LC Oscillations, Qualitatively: The energy stored in the electric field of the capacitor at any time is where q is the charge on the capacitor at that time. The energy stored in the magnetic field of the inductor at any time is where i is the current through the inductor at that time. As the circuit oscillates, energy shifts back and forth from one type of stored energy to the other, but the total amount is conserved.

31.2: LC Oscillations: The time-varying potential difference (or voltage) vC that exists across the capacitor C is To measure the current, we can connect a small resistance R in series with the capacitor and inductor and measure the time-varying potential difference vR across it:

31.3: The Electrical Mechanical Analogy: One can make an analogy between the oscillating LC system and an oscillating block–spring system. Two kinds of energy are involved in the block–spring system. One is potential energy of the compressed or extended spring; the other is kinetic energy of the moving block. Here we have the following analogies: The angular frequency of oscillation for an ideal (resistanceless) LC is:

31.4: LC Oscillations, Quantitatively: The Block-Spring Oscillator: The LC Oscillator:

31.4: LC Oscillations, Quantitatively: Angular Frequencies: But

31.4: LC Oscillations, Quantitatively: The electrical energy stored in the LC circuit at time t is, The magnetic energy is: But Therefore Note that The maximum values of UE and UB are both Q2/2C. At any instant the sum of UE and UB is equal to Q2/2C, a constant. When UE is maximum,UB is zero, and conversely.

Example, LC oscillator, potential charge, rate of current change

31.5: Damped Oscillations in an RLC Circuit:

31.5: Damped Oscillations in an RLC Circuit: Where And Analysis:

Example, Damped RLC Circuit:

31.6: Alternating Current: wd is called the driving angular frequency, and I is the amplitude of the driven current.

31.6: Forced Oscillations:

31.7: Three Simple Circuits: i. A Resistive Load: For a purely resistive load the phase constant f= 0°.

31.7: Three Simple Circuits: i. A Resistive Load:

Example, Purely resistive load: potential difference and current

31.7: Three Simple Circuits: ii. A Capacitive Load: XC is called the capacitive reactance of a capacitor. The SI unit of XC is the ohm, just as for resistance R.

31.7: Three Simple Circuits: ii. A Capacitive Load:

Example, Purely capacitive load: potential difference and current

31.7: Three Simple Circuits: iii. An Inductive Load: is the ohm, The value of XL , the inductive resistance, depends on the driving angular frequency wd. The unit of the inductive time constant tL indicates that the SI unit of XL is the ohm.

31.7: Three Simple Circuits: iii. An Inductive Load:

Example, Purely inductive load: potential difference and current

31.7: Three Simple Circuits:

31.9: The Series RLC Circuit: Fig. 31-14 (a) A phasor representing the alternating current in the driven RLC circuit at time t. The amplitude I, the instantaneous value i, and the phase(wdt-f) are shown. (b) Phasors representing the voltages across the inductor, resistor, and capacitor, oriented with respect to the current phasor in (a). (c) A phasor representing the alternating emf that drives the current of (a). (d) The emf phasor is equal to the vector sum of the three voltage phasors of (b).Here, voltage phasors VL and VC have been added vectorially to yield their net phasor (VL-VC).

31.9: The Series RLC Circuit:

31.9: The Series RLC Circuit: Fig. 31-15 Phasor diagrams and graphs of the alternating emf and current i for a driven RLC circuit. In the phasor diagram of (a) and the graph of (b), the current I lags the driving emf and the current’s phase constant f is positive. In (c) and (d), the current i leads the driving emf and its phase constant f is negative. In (e) and ( f ), the current i is in phase with the driving emf and its phase constant f is zero.

31.9: The Series RLC Circuit, Resonance: For a given resistance R, that amplitude is a maximum when the quantity (wdL -1/wdC) in the denominator is zero. The maximum value of I occurs when the driving angular frequency matches the natural angular frequency—that is, at resonance.

31.9: The Series RLC Circuit, Resonance:

31.10: Power in Alternating Current Circuits: The instantaneous rate at which energy is dissipated in the resistor: The average rate at which energy is dissipated in the resistor, is the average of this over time: Since the root mean square of the current is given by: Similarly, With Therefore, where

Example, Driven RLC circuit:

Example, Driven RLC circuit, cont.:

31.11: Transformers: In electrical power distribution systems it is desirable for reasons of safety and for efficient equipment design to deal with relatively low voltages at both the generating end (the electrical power plant) and the receiving end (the home or factory). Nobody wants an electric toaster or a child’s electric train to operate at, say, 10 kV. On the other hand, in the transmission of electrical energy from the generating plant to the consumer, we want the lowest practical current (hence the largest practical voltage) to minimize I2R losses (often called ohmic losses) in the transmission line.

31.11: Transformers: A device with which we can raise and lower the ac voltage in a circuit, keeping the product current voltage essentially constant, is called the transformer. The ideal transformer consists of two coils, with different numbers of turns, wound around an iron core. In use, the primary winding, of Np turns, is connected to an alternating-current generator whose emf at any time t is given by The secondary winding, of Ns turns, is connected to load resistance R, but its circuit is an open circuit as long as switch S is open. The small sinusoidally changing primary current Imag produces a sinusoidally changing magnetic flux B in the iron core. Because B varies, it induces an emf ( dB/dt) in each turn of the secondary. This emf per turn is the same in the primary and the secondary. Across the primary, the voltage Vp =Eturn Np. Similarly, across the secondary the voltage is Vs =EturnNs.

31.11: Transformers: If Ns >Np, the device is a step-up transformer because it steps the primary’s voltage Vp up to a higher voltage Vs. Similarly, if Ns <Np, it is a step-down transformer. If no energy is lost along the way, conservation of energy requires that Here Req is the value of the load resistance as “seen” by the generator. For maximum transfer of energy from an emf device to a resistive load, the resistance of the emf device must equal the resistance of the load. For ac circuits, for the same to be true, the impedance (rather than just the resistance) of the generator must equal that of the load.

Example, Transformer: