Summary: Computer System Components Proc Caches Busses Memory I/O Devices: Controllers adapters Disks Displays Keyboards Networks.

Slides:



Advertisements
Similar presentations
CSE 340 Computer Architecture Spring 2014 MIPS ISA Review
Advertisements

CSE 340 Computer Architecture Fall 2014 Introduction Thanks to Dr. MaryJaneIrwin for the slides.
CpE442 Intro. To Computer Architecture CpE 442 Introduction To Computer Architecture Lecture 1 Instructor: H. H. Ammar These slides are based on the lecture.
CSE431 L01 Introduction.1Irwin, PSU, 2005 CSE 431 Computer Architecture Fall 2005 Lecture 01: Introduction Mary Jane Irwin ( )
CPSC 321 Computer Architecture Fall 2006 Lecture 1 Introduction and Five Components of a Computer Adapted from CS 152 Spring 2002 UC Berkeley Copyright.
ECE 232 L3 InstructionSet.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 3.
CMSC411/Computer Architecture These slides and all associated material are © 2003 by J. Six and are available only for students enrolled in CMSC411. Introduction.
CPSC 321 Computer Architecture Spring 2005 Lecture 1 Introduction and Five Components of a Computer Adapted from CS 152 Spring 2002 UC Berkeley Adapted.
EEM 486 EEM 486: Computer Architecture Lecture 1 Course Introduction and the Five Components of a Computer.
Cs 152 L1 Intro.1 Patterson Fall 97 ©UCB CS152 Computer Architecture and Engineering Lecture 1 August 27, 1997 Dave Patterson (http.cs.berkeley.edu/~patterson)
מבנה מחשבים הרצאה 1 מבנה מחשבים Lecture 1 Course Introduction Eytan Ruppin and Alon Schclar Slides from Randy H. Katz, John Wawrzynek and Dan Garcia Berkeley.
ENEE350 Spring07 1 Ankur Srivastava University of Maryland, College Park Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005.”
CS152 / Kubiatowicz Lec1.1 ©UCB Spring 20011/16/01 CS152 Computer Architecture and Engineering Lecture 1 Introduction and Five Components of a Computer.
מבנה מחשבים הרצאה 1 מבנה מחשבים Lecture 1 Course Introduction Yehuda Afek and Yossi Matias Slides from Randy H. Katz, and John Wawrzynek Berkeley.
ECE 232 L2 Basics.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 2 Computer.
CS472 COMPUTER ARCHITECTURE AND ASSEMBLY LANGUAGE –Bruce D’Ambrosio Dearborn, –Text: Computer Organization and Design.
1  2004 Morgan Kaufmann Publishers Lectures for 3rd Edition Note: these lectures are often supplemented with other materials and also problems from the.
CS152 / Kubiatowicz Lec1.1 ©UCB Fall 20018/29/01 CS152 Computer Architecture and Engineering Lecture 1 Introduction and Five Components of a Computer August.
CPEN Digital System Design Chapter 10 – Instruction SET Architecture (ISA) © Logic and Computer Design Fundamentals, 4 rd Ed., Mano Prentice Hall.
CS / Schlesinger Lec1.1 1/20/99©UCB Spring 1999 Computer Architecture Lecture 1 Introduction and Five Components of a Computer Spring, 1999 Arie Schlesinger.
1 CSE SUNY New Paltz Chapter 1 Introduction CSE-45432Introduction to Computer Architecture Dr. Izadi.
ELEN 350 Computer Architecture Spring 2005 Introduction and Five Components of a Computer Adapted from CS 152 Spring 2002 UC Berkeley Adapted from CPSC.
CS152 / Kubiatowicz Lec1.1 1/20/99©UCB Spring 1999 CS152 Computer Architecture and Engineering Lecture 1 Introduction and Five Components of a Computer.
CS152 / Kubiatowicz Lec1.1 ©UCB Fall 19998/23/99 CS152 Computer Architecture and Engineering Lecture 1 Introduction and Five Components of a Computer August.
ECE 232 L1 Intro.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 1 Introduction.
CS152 / Spring 2002 Lec1.1 CS152 Computer Architecture and Engineering Lecture 1 Introduction and Five Components of a Computer.
CENG311 Computer Architecture Kayhan Erciyes. CS231 Assembly language and Digital Circuits Instructor:Kayhan Erciyes Office:
CpE442 Intro. To Computer Architecture CpE 442 Introduction To Computer Architecture Lecture 1 Instructor: H. H. Ammar These slides are based on the lecture.
Cs 152 L1 Intro.1 Patterson Fall 97 ©UCB ECE 366 Computer Architecture Lecture 1-2 Shantanu Dutt ( Adapted from (with adds.
Digital Systems Design L01 Introduction.1 Digital Systems Design Lecture 01: Introduction Adapted from: Mary Jane Irwin ( )
ECE 4436ECE 5367 Introduction to Computer Architecture and Design Ji Chen Section : T TH 1:00PM – 2:30PM Prerequisites: ECE 4436.
Computer Architecture ECE 4801 Berk Sunar Erkay Savas.
Cs 152 L1 Intro.1 Patterson Fall 97 ©UCB What is “Computer Architecture” Computer Architecture = Instruction Set Architecture + Machine Organization.
Patterson Fall 97 ©UCB CS/EE 362 Hardware Fundamentals Lecture 8 (Chapter 1: Hennessy and Patterson) Winter Quarter 1998 Chris Myers.
International Technology University CEN 951 Computer Architecture Lecture 2 Five Components of a Computer.
COMP3221 lec04--prog-model.1 Saeid Nooshabadi COMP 3221 Microprocessors and Embedded Systems Lecture 4: Programmer’s Model of Microprocessors
1 Computer System Organization I/O systemProcessor Compiler Operating System (Windows 98) Application (Netscape) Digital Design Circuit Design Instruction.
Computer Organization and Design Computer Abstractions and Technology
Computer Architecture Mehran Rezaei
CS35101 Computer Architecture Spring 2006 Week 1 Slides adapted from: Mary Jane Irwin ( Course url:
Cps-104 Intro.1 ©GK Spring 1999 CPS104 Computer Organization Lecture 1 January 14, 1999 Gershon Kedem Slides available on:
CS152 / Fall 2002 Lec 1.1 Computer Organization Lecture 1 Course Introduction and the Five Components of a Computer Modified From the Lectures of Randy.
Computer System Design Lecture 1 Wannarat Suntiamorntut.
Texas A&M University Department of Computer Science CPSC 321 Computer Architecture Introduction to Course and Five Components of a Computer Instructor.
Introduction to Computer Organization
by Computer System Design Lecture 1 Wannarat Suntiamorntut
Computer Architecture CPSC 350
 Lecture 2 Processor Organization  Control needs to have the  Ability to fetch instructions from memory  Logic and means to control instruction sequencing.
CPSC 321 Computer Architecture Summer 2005 Lecture 1 Introduction and Five Components of a Computer Praveen Bhojwani Adapted from CS 152 Spring 2002 UC.
S.J.Lee 1 컴퓨터 구조 강좌개요 순천향대학교 컴퓨터학부 이 상 정. S.J.Lee 2 교 재교 재 J.L.Hennessy & D.A.Patterson Computer Architecture a Quantitative Approach, Second Edition.
1 chapter 1 Computer Architecture and Design ECE4480/5480 Computer Architecture and Design Department of Electrical and Computer Engineering University.
Lecture 1: Computer Architecture and Technology Professor Mike Schulte Computer Architecture ECE 201.
DR. SIMING LIU SPRING 2016 COMPUTER SCIENCE AND ENGINEERING UNIVERSITY OF NEVADA, RENO CS 219 Computer Organization.
DR. SIMING LIU SPRING 2016 COMPUTER SCIENCE AND ENGINEERING UNIVERSITY OF NEVADA, RENO Session 2 Computer Organization.
CSIE30300 Computer Architecture Unit 01: Introduction Hsin-Chou Chi [Adapted from material by and
Compsci Today’s topics l Operating Systems  Brookshear, Chapter 3  Great Ideas, Chapter 10  Slides from Kevin Wayne’s COS 126 course l Performance.
Cs 152 L1 Intro.1 Patterson Fall 97 ©UCB CS152 Computer Architecture and Engineering Lecture 1 August 27, 1997 Dave Patterson (http.cs.berkeley.edu/~patterson)
1 TM 1 Embedded Systems Lab./Honam University ARM Microprocessor Programming Model.
1 CHAPTER 1 COMPUTER ABSTRACTIONS AND TECHNOLOGY Parts of these notes have been adapter from those of Prof. Professor Mike Schulte, Prof. D. Patterson,
CSE431 L01 Introduction.1Irwin, PSU, 2005 CSE 431 Computer Architecture Fall 2005 Lecture 01: Introduction Mary Jane Irwin ( )
By Wannarat Computer System Design Lecture 1 Wannarat Suntiamorntut.
CS4100: 計算機結構 Course Outline 國立清華大學資訊工程學系 九十九年度第二學期.
CpE 442 Introduction To Computer Architecture Lecture 1
Chapter 1 Computer Abstractions and Technology
Computer Architecture and Organization
Computer Architecture CSCE 350
Welcome to Architectures of Digital Systems
CSC3050 – Computer Architecture
CS4100: 計算機結構 Course Outline
Computer Architecture
Presentation transcript:

Summary: Computer System Components Proc Caches Busses Memory I/O Devices: Controllers adapters Disks Displays Keyboards Networks

What is “Computer Architecture” Computer Architecture = Instruction Set Architecture + Machine Organization

-- Organization of Programmable Storage -- Data Types & Data Structures: Encoding & Representations -- Instruction Set -- Instruction Formats -- Modes of Addressing and Accessing Data Items and Instructions -- Exceptional ConditionsSOFTWARE

instruction set software hardware The Instruction Set: a Critical Interface

Digital Alpha(v1, v3) HP PA-RISC(v1.1, v2.0) Sun Sparc(v8, v9) SGI MIPS(MIPS I, II, III, IV, V) Intel(8086,80286,80386, ,Pentium, MMX,...) Example ISAs (Instruction Set Architectures)

Instruction Categories –Load/Store –Computational –Jump and Branch –Floating Point coprocessor –Memory Management –Special R0 - R31 PC HI LO OP rs rt rdsafunct rs rt immediate jump target 3 Instruction Formats: all 32 bits wide Registers MIPS R3000 Instruction Set Architecture (Summary)

Organization Logic Designer's View ISA Level FUs & Interconnect Capabilities & Performance Characteristics of Principal Functional Units –(e.g., Registers, ALU, Shifters, Logic Units,...) Ways in which these components are interconnected Information flows between components Logic and means by which such information flow is controlled. Choreography of FUs to realize the ISA Register Transfer Level (RTL) Description

Example Organization TI SuperSPARC tm TMS390Z50 in Sun SPARCstation20 Floating-point Unit Integer Unit Inst Cache Ref MMU Data Cache Store Buffer Bus Interface SuperSPARC L2 $ CC MBus Module MBus L64852 MBus control M-S Adapter SBus DRAM Controller SBus DMA SCSI Ethernet STDIO serial kbd mouse audio RTC Floppy SBus Cards

What is “Computer Architecture”? I/O systemInstr. Set Proc. Compiler Operating System Application Digital Design Circuit Design Instruction Set Architecture Firmware Coordination of many levels of abstraction Under a rapidly changing set of forces Design, Measurement, and Evaluation Datapath & Control Layout

Forces on Computer Architecture Computer Architecture Technology Programming Languages Operating Systems History Applications

In ~1985 the single-chip processor (32-bit) and the single-board computer emerged => workstations, personal computers, multiprocessors have been riding this wave since In the timeframe, these may well look like mainframes compared single-chip computer (maybe 2 chips) DRAM YearSize Kb Kb Mb Mb Mb Mb Mb Gb Technology

Technology => dramatic change Processor –logic capacity: about 30% per year –clock rate: about 20% per year Memory –DRAM capacity: about 60% per year (4x every 3 years) –Memory speed: about 10% per year –Cost per bit: improves about 25% per year Disk –capacity: about 60% per year

Performance Trends Microprocessors Minicomputers Mainframes Supercomputers 1995 Year Log of Performance

Processor Performance (SPEC) RISC introduction performance now improves ­ 50% per year (2x every 1.5 years) Did RISC win the technology battle and lose the market war?

Applications and Languages CAD, CAM, CAE,... Lotus, DOS,... Multimedia,... The Web,... JAVA,... ???

Measurement and Evaluation Architecture is an iterative process -- searching the space of possible designs -- at all levels of computer systems Good Ideas Mediocre Ideas Cost / Performance Analysis Design Analysis C reativity Bad Ideas

Why do Computer Architecture? CHANGE It’s exciting! It has never been more exciting! It impacts every other aspect of electrical engineering and computer science

Levels of Representation (61C Review) High Level Language Program Assembly Language Program Machine Language Program Control Signal Specification Compiler Assembler Machine Interpretation temp = v[k]; v[k] = v[k+1]; v[k+1] = temp; lw$15,0($2) lw$16,4($2) sw$16,0($2) sw$15,4($2) ALUOP[0:3] <= InstReg[9:11] & MASK

Levels of Organization SPARCstation 20 Processor Computer Control Datapath MemoryDevices Input Output Workstation Design Target: 25% of cost on Processor 25% of cost on Memory (minimum memory size) Rest on I/O devices, power supplies, box

Execution Cycle Instruction Fetch Instruction Decode Operand Fetch Execute Result Store Next Instruction Obtain instruction from program storage Determine required actions and instruction size Locate and obtain operand data Compute result value or status Deposit results in storage for later use Determine successor instruction

The SPARCstation 20 Memory Controller SIMM Bus Memory SIMMs Slot 1MBu s Slot 0MBu s MSBI Slot 1SBusSlot 0SBusSlot 3SBusSlot 2SBus MBus SECMACIO Disk Tape SCSI Bus SBus Keyboard & Mouse Floppy Disk External Bus SPARCstation 20

The Underlying Interconnect SPARCstation 20 Memory Controller SIMM Bus MSBI Processor/Mem Bus: MBus SECMACIO Standard I/O Bus: Sun’s High Speed I/O Bus: SBus Low Speed I/O Bus: External Bus SCSI Bus

Processor and Caches SPARCstation 20 Slot 1MBu s Slot 0MBu s MBus Module External Cache DatapathRegisters Internal Cache Control Processor

Memory SPARCstation 20 Memory Controller Memory SIMM Bus SIMM Slot 0SIMM Slot 1SIMM Slot 2SIMM Slot 3SIMM Slot 4SIMM Slot 5SIMM Slot 6SIMM Slot 7 DRAM SIMM DRAM

Input and Output (I/O) Devices SPARCstation 20 Slot 1SBusSlot 0SBusSlot 3SBusSlot 2SBus SECMACIO Disk Tape SCSI Bus SBus Keyboard & Mouse Floppy Disk External Bus SCSI Bus: Standard I/O Devices SBus: High Speed I/O Devices External Bus: Low Speed I/O Device

Standard I/O Devices SPARCstation 20 Disk Tape SCSI Bus SCSI = Small Computer Systems Interface A standard interface (IBM, Apple, HP, Sun... etc.) Computers and I/O devices communicate with each other The hard disk is one I/O device resides on the SCSI Bus

High Speed I/O Devices SPARCstation 20 Slot 1SBusSlot 0SBusSlot 3SBusSlot 2SBus SBus is SUN’s own high speed I/O bus SS20 has four SBus slots where we can plug in I/O devices Example: graphics accelerator, video adaptor,... etc. High speed and low speed are relative terms

Slow Speed I/O Devices SPARCstation 20 Keyboard & Mouse Floppy Disk External Bus The are only four SBus slots in SS20--”seats” are expensive The speed of some I/O devices is limited by human reaction time--very very slow by computer standard Examples: Keyboard and mouse No reason to use up one of the expensive SBus slot