New limits on  + EC and ECEC processes in 74 Se and 120 Te A.S. Barabash 1), F. Hubert 2), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow,

Slides:



Advertisements
Similar presentations
NEMO-3 experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Coseners House, Abingdon.
Advertisements

Double Beta Decay review
Structure of the ECEC candidate daughter 112 Cd P.E. Garrett University of Guelph TRIUMF Excellence Cluster “Universe”, Technische Universität München.
Penning-Trap Mass Spectrometry for Neutrino Physics
 -Ray Emission Probabilities Edgardo Browne Decay Data Evaluation Project Workshop May 12 – 14, 2008 Bucharest, Romania.
March 12, 2005Benasque Neutrinos Theory Neutrinos Theory Carlos Pena Garay IAS, Princeton ~
K. Zuber, University of Sussex Neutrinoless double beta decay SUSSP 61, St. Andrews, 9-23 Aug
Double beta decay nuclear matrix elements in deformed nuclei O. Moreno, R. Álvarez-Rodríguez, P. Sarriguren, E. Moya de Guerra F. Šimkovic, A. Faessler.
M. Dracos 1 Double Beta experiment with emulsions?
Erice, Kai Zuber1 Status of the COBRA Experiment K. Zuber, TU Dresden.
DBD matrix elements Welcome and aim of the workshop Experimental situation Outcome.
-Nucleus Interactions Double-beta Decay and Cristina VOLPE Institut de Physique Nucléaire Orsay, France.
0νββ nuclear matrix elements within QRPA and its variants W. A. Kamiński 1, A. Bobyk 1 A. Faessler 2 F. Šimkovic 2,3, P. Bene š 4 1 Dept. of Theor. Phys.,
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, E. Uberseder Torino workshop,
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
From CUORICINO to CUORE: To probe the inverted hierarchy region On behalf of the CUORE collaboration DUSL Meeting, Washington DC November 2,-4, 2007 Frank.
Lawrence Livermore National Laboratory Using Nuclear Resonance Fluorescence to Isotopically Map Containers Micah S Johnson, D.P. McNabb This work performed.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
XXIV WWND South Padre, TX, April 08 W. Bauer Slide 1 Double  Decays, DUSEL, and the Standard Model Wolfgang Bauer Michigan State University.
Potassium Geo-neutrino Detection Mark Chen Queen’s University Neutrino Geophysics, Honolulu, Hawaii December 15, 2005.
New observation of 2  2 decay of 100 Mo to the level of 100 Ru in the ARMONIA experiment F. Cappella INFN-Roma SILAFAE Valparaiso, CHILE 6-12 December.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
M. Dracos, CEA, 10/04/ Double Beta experiment with emulsions?
COBRA Double Beta Decay Experiment D.Y. Stewart, Dr. Y.A. Ramachers, Prof. P.F.Harrison Experimental Particle Physics Group University of Warwick What.
Search for  + EC and ECEC processes in 112 Sn A.S. Barabash 1), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow, Russia 2) CNBG, Gradignan,
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)
Double-Beta Decay of 96 Zr and Double-Electron Capture of 156 Dy to Excited Final States Sean Finch Thesis Defense March 25, 2015.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Double Beta Decay in SNO+ Huaizhang Deng University of Pennsylvania.
Nuclear matrix elements 1 / T 1/2 = PS * NME 2 * (m / m e ) 2 measured quantityquantity of interest The big unknown Started worldwide effort for a coherent.
Study of the Halo Nucleus 6 He using the 6 Li(   ) 6 He Reaction Derek Branford - Edinburgh University for the A2-Collaboration MAMI-B Mainz.
Pygmy Dipole Resonance in 64Fe
35 Ca decay beta-delayed 1- and 2-proton spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC) institutions: Centre d’Etudes Nucléaires (Bordeaux) –
Search for double electron capture in 106 Cd using HPGe detectors and Si pixel detectors Ivan Štekl for TGV collaboration Institute of Experimental and.
Energy determination at BEPC-II  Satellite Meeting «On the Need for a super-tau-charm factory» September 26 – 27, 2008, BINP, Novosibirsk, Russia M.N.
Neutrino-related nuclear mass difference measurements with a few 10 eV uncertainty at SHIPTRAP Enrique MINAYA RAMIREZ Max-Planck-Institut für Kernphysik,
Welcome talk IDEA meeting, Prague, MEDEX workshop news 2.Present status of the TGV II 3.Organization remarks I.Štekl Institute of experimental.
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
1 GEMMA: experimental searches for neutrino magnetic moment JINR: V. Brudanin, V. Egorov, D. Medvedev, M. Shirchenko, E. Shevchik, I. Zhitnikov, V. Belov.
Compared sensitivities of next generation DBD experiments IDEA - Zaragoza meeting – 7-8 November 2005 C. Augier presented by X. Sarazin LAL – Orsay – CNRS/IN2P3.
Telescope Germanium Vertical Telescope Germanium Vertical JINR Dubna, Russia CSNSM Orsay, France CTU Prague, Czech Republic RRC - Kurchatov Institute Moscow,
ON E0 TRANSITIONS IN HEAVY EVEN – EVEN NUCLEI VLADIMIR GARISTOV, A. GEORGIEVA* Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria,
Stefano Pirro – NuMass 2010 Stefano Pirro Double beta decay searches with enriched and scintillating bolometers - Milano - Bicocca The Future of Neutrino.
DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW.
1 Isospin symmetry. Beta-decay studies of Tz=-1 nuclei at Rising. B. Rubio for the Valencia-Osaka-Surrey-Leuven-Santiago-GSI Istambul-Lund-Legnaro Collaboration.
K. Zuber, Uni. Sussex Status of COBRA IDEA Meeting, Zaragoza 7 Nov
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
LOMONOSOV MOSCOW STATE UNIVERSITY, SKOBELTSYN INSTITUTE OF NUCLEAR PHYSICS Multi-particle photodisintegration of heavy nuclei A.N. Ermakov, B.S. Ishkhanov,
Search for double electron capture in 106 Cd using HPGe detectors and Si pixel detectors Ivan Štekl for TGV collaboration Institute of Experimental and.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
Neutrinoless double electron capture experiment at LSM University of Muenster, Germany (Dieter Frekers et al.) Technical University of Dresden, Germany.
Double Beta Decay - status and future Double beta decay basics Double beta decay basics Experimental challenges Experimental challenges Current experimental.
DOUBLE BETA DECAY EXPERIMENTS Yeongduk Kim Sejong University 2 nd Amore Meeting
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
Development of CaMoO 4 Scintillation Crystals for the 0-  decay search 1.Introduction 2.CaMoO4 Crystal R&D 3.YangYang underground laboratory for KIMS.
OMC rates in different nuclei related to 2β-decay. K.Ya. Gromov, D.R. Zinatulina, C. Briançon, V.G. Egorov, A.V. Klinskih, R.V. Vasiliev, M.V.Shirchenko,I.
P. CermakRez near Prague, December 2005 EC/EC process measurement in TGV experiment For TGV collaboration: JINR Dubna, Russia CTU Prague, Czech Republic.
Scintillating Bolometers – Rejection of background due to standard two-neutrino double beta decay D.M. Chernyak 1,2, F.A. Danevich 2, A. Giuliani 1, M.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.
1 Current status and future of double  decay experiments Fedor Danevich Institute for Nuclear Research, Kyiv, Ukraine F.A. Danevich.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
Search for Neutrinoless Double-Beta Decay Werner Tornow Duke University & Triangle Universities Nuclear Laboratory (TUNL) & Kavli-Tokyo Institute of the.
Activities on double beta decay search at KIMS
Review: Prospects of detection of relic antineutrinos by resonant absorption in electron capturing nuclei. J D Vergados & Yu N Novikov, J. Phys. G: Nucl.
Presentation transcript:

New limits on  + EC and ECEC processes in 74 Se and 120 Te A.S. Barabash 1), F. Hubert 2), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow, Russia 2) CENBG, Gradignan, France 1

Outline  Introduction  120 Te experiment  74 Se experiment  Conclusion

I. Introduction 2  +,  + EC and ECEC processes:  0 -transitions: (A,Z)  (A,Z-2) + 2e + e b + (A,Z)  (A,Z-2) + e + + X 2e b + (A,Z)  (A,Z-2) +  (2 ,e + e -,e -,…) + 2X  2 -transitions: (A,Z)  (A,Z-2) + 2e e b + (A,Z)  (A,Z-2) + e X 2e b + (A,Z)  (A,Z-2) X

Q value  2  + : Q =  M – 4m e – 2  b (Q max  0.8 MeV) (6 nuclei)   + EC: Q =  M – 2m e –  b (Q max  1.8 MeV) (22 nuclei)  ECEC: Q =  M – 2  b (Q max  2.8 MeV) (34 nuclei)

ECEC(0 ) to the ground state  2e b + (A,Z)  (A,Z-2) + 2X +  brem + 2  + e + e - + e - int E ,.. =  M -  e1 -  e2 Suppression factor is ~ 10 4 (in comparison with EC  + (0 )) – M. Doi and T. Kotani, Prog. Theor. Phys. 89 (1993)139.

ECEC(0 ); resonance conditions Transition to the ground state. For the best candidates ( = 1 eV):  +  + (0 ) ~ y  + EC(0 ) ~ y ECEC(0 ) ~ y (One can compare these values with ~ y for 2  - -decay)

Resonance conditions  In 1955 (R.Winter, Phys. Rev. 100 (1955) 142) it was mentioned that if there is excited level with “right” energy then decay rate can be very high. (Q’-E* has to be close to zero. Q’-energy of decay to g.s., E*-energy of excited state)  In 1982 the same idea for transition to excited and ground states was discussed (M. Voloshin, G. Mizelmacher, R. Eramzhan, JETP Lett. 35 (1982)).  In 1983 (J. Bernabeu, A. De Rujula, C. Jarlskog, Nucl. Phys. B 223 (1983) 15) this idea was discussed for 112 Sn (transition to 0 + excited state). It was shown that enhancement factor can be on the level ~ 10 6 !

J. Bernabeu, A. De Rujula, C. Jarlskog, Nucl. Phys. B 223 (1983) Sn  112 Cd [0 + (1871)] M = ±4.8 keV Q’(KK;0 + ) = M – E*(0 + ) – 2E K = = (-4.9 ± 4.8) keV T 1/2 (0)  3·10 24 y (for = 1 eV) (if Q’ ~ 10 eV) [ECEC(2) transition is strongly suppressed!!!] Nice signature: in addition to two X-rays we have here two gamma- rays with strictly fixed energy (617.4 and keV)

Resonance conditions  In 2004 the same conclusion was done by Z. Sujkowski and S. Wycech (Phys. Rev. C 70 (2004) ).  Resonance condition (using single EC(,) argument): E brems = Q’ res = E(1S,Z-2)-E(2P,Z-2) (i.e. when the photon energy becomes comparable to the 2P-1S level difference in the final atom) Q’-Q’res < 1 keV

Decay-scheme of 74 Se Here M = ±2.3 keV Q’ = M - 2E b Q’(E*) = Q’ –  0

Isotope-candidates (transition to the excited state) NucleiA, %  M, keV E*, keVEKEK E L2 74 Se ± (2 + ) Kr ± (2 + ) Ru ± (?) Cd ± (1,2 + ) Sn ± (0 + ) Ba ± (?) Ce ± (1 +,2 + ) (1 +,2 + ) Er ± (1 + )

g.s.-g.s. transitions 152 Gd (0.2%), 164 Er (1.56%), 180 W(0.13%) (There are only X-rays in this case)

Problems  There is no good theoretical description of the ECEC processes and “resonance” conditions  Accuracy of  M (and Q as a result) is not very good (~ 2-10 keV) and has to be improved [It is possible to improve the accuracy of  M to ~ 200 eV]

II. 120 Te [J. Phys.G 34 (2007) 1721] M = ± 10 keV  = 0.09%

SCHEME OF EXPERIMENT E = 2.0 keV (for 1332 keV) T = h Experiment is done in Modane Underground Laboratory, 4800 m w.e.

120 Te (spectra)

120 Te (results) Transition E  (  ) T 1/2, y This work T 1/2, y Other works (COBRA)  + EC(0 +2 ); g.s (7.38%)> 0.19 > 0.12 (0 ) ECEC(0 ) L 1 L 2 ; g.s (2.05%)> 0.29 > (0 ) ECEC(0 ) K 1 L 2 ; g.s (2.08%)> 0.39 > (0 ) ECEC(0 ) K 1 K 2 ; g.s (2.08%) (7.38%) > 0.6 > 0.19 > (0 ) - ECEC(2 ); g.s. -- > (2 ) ECEC(0 +2 ); (2.60%)> 0.75 > (2 ) > (0 ) Present limits are ~ times better then previous best results!!!

Future possibilities:  1 kg of 120 Te, 1 y  ~ 5·10 21 y  CUORICINO (40 kg of natural Te)  ~ y  CUORE (1000 kg of natural Te), COBRA (440 kg of CdZrTe)  ~ y [In the last case ECEC(2 ) transition could be detected]

III. 74 Se [Nucl. Phys. A 785 (2007) 371] M = ± 2.3 keV  = 0.89% 400 cm 3 HPGe detector E = 2.0 keV (for 1332 keV) Mass of Se powder is 563 g t = h

74 Se (spectra)

74 Se (results) TransitionE , keVT 1/2, y (90%CL)  + EC(0 +2 ); g.s > 0.55·10 19 ECEC(2 ); > 0.77·10 19 ECEC(2 ); , 608.4, > 0.55·10 19 ECEC(0 ) L 1 L 2 ; g.s > 0.41·10 19 ECEC(0 ) K 1 L 2 ; g.s > 0.64·10 19 ECEC(0 ) K 1 K 2 ; g.s > 0.19·10 19 > 0.62·10 19

74 Se (results-2) TransitionE , keVT 1/2, y (90%CL) ECEC(0 ) L 1 L 2 ; , 611.1> 1.3·10 19 ECEC(0 ) K 1 L 2 ; , 601.4> 1.12·10 19 ECEC(0 ) K 1 K 2 ; , 590.1> 1.57·10 19 ECEC(0 ) L 1 L 2 ; , 608,4, > 0.55·10 19

How to increase the sensitivity:  1 kg of 74 Se, 1 y  ~ 5·10 21 y  200 kg of 74 Se (using GERDA or MAJORANA), 10 y  ~ y ( ~ 0.1 eV).

CONCLUSION  New limits on the  + EC and ECEC processes for 120 Te have been obtained (limits are in ~ times better than previous results)  For the first time limits on  + EC and ECEC processes for 74 Se have been obtained  For the first time possible resonance ECEC(0) transition 74 Se- 74 Ge ( keV) has been investigated and limit 5.5·10 18 y was obtained

BACKUP SLIDES

Last best achievements for such processes  ECEC(2 ): - T 1/2 ( 130 Ba) = (2.2 ± 0.5)·10 21 y (geochemical) - > 1.5·10 21 y ( 78 Kr, Baksan) - > 2·10 20 y ( 106 Cd, TGV-II) - > 5.9·10 21 y ( 40 Ca, DAMA-Solotvino)  2  + (0 +2 ), EC  + (0 +2 ), ECEC(0 ): > y ( 78 Kr, 106 Cd, 40 Ca; Baksan-Spain, DAMA-Solotvino) > y ( 120 Te, 108 Cd, 136 Ce, 138 Ce, 64 Zn, 180 W; COBRA, DAMA, Solotvino)

Table 7. Best present limits on ECEC(0) to the excited state (for isotope-candidates with possible resonance conditions) NucleiE*(J  f )T 1/2, y 106 Cd2741 (1,2 + )> 3·10 19 [DAMA-Solotvino] > 5·10 19 *) [TGV-II] 74 Se1204.2(2 + )> 0.55·10 19 [This work] 130 Ba2608.4(?)> 1.5·10 21 (geochemical) 78 Kr2838.9(2 + )> 1.2·10 21 *) [Baksan] *) Extracted from result for 2( g.s. ) transition