Probabilistic Inference Lecture 4 – Part 2 M. Pawan Kumar Slides available online

Slides:



Advertisements
Similar presentations
MAP Estimation Algorithms in M. Pawan Kumar, University of Oxford Pushmeet Kohli, Microsoft Research Computer Vision - Part I.
Advertisements

Algorithms for MAP estimation in Markov Random Fields Vladimir Kolmogorov University College London Tutorial at GDR (Optimisation Discrète, Graph Cuts.
1 LP, extended maxflow, TRW OR: How to understand Vladimirs most recent work Ramin Zabih Cornell University.
Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman.
Focused Inference with Local Primal-Dual Gaps
1 LP Duality Lecture 13: Feb Min-Max Theorems In bipartite graph, Maximum matching = Minimum Vertex Cover In every graph, Maximum Flow = Minimum.
Solving IPs – Cutting Plane Algorithm General Idea: Begin by solving the LP relaxation of the IP problem. If the LP relaxation results in an integer solution,
ECE Longest Path dual 1 ECE 665 Spring 2005 ECE 665 Spring 2005 Computer Algorithms with Applications to VLSI CAD Linear Programming Duality – Longest.
Tutorial at ICCV (Barcelona, Spain, November 2011)
ICCV 2007 tutorial Part III Message-passing algorithms for energy minimization Vladimir Kolmogorov University College London.
Discrete Optimization in Computer Vision Nikos Komodakis Ecole des Ponts ParisTech, LIGM Traitement de l’information et vision artificielle.
An Analysis of Convex Relaxations (PART I) Minimizing Higher Order Energy Functions (PART 2) Philip Torr Work in collaboration with: Pushmeet Kohli, Srikumar.
Probabilistic Inference Lecture 1
1 Fast Primal-Dual Strategies for MRF Optimization (Fast PD) Robot Perception Lab Taha Hamedani Aug 2014.
An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.
P 3 & Beyond Solving Energies with Higher Order Cliques Pushmeet Kohli Pawan Kumar Philip H. S. Torr Oxford Brookes University CVPR 2007.
Improved Moves for Truncated Convex Models M. Pawan Kumar Philip Torr.
EMGT 501 HW # (b) (c) 6.1-4, Due Day: Sep. 21.
Efficiently Solving Convex Relaxations M. Pawan Kumar University of Oxford for MAP Estimation Philip Torr Oxford Brookes University.
Support Vector Machine (SVM) Classification
Recovering Articulated Object Models from 3D Range Data Dragomir Anguelov Daphne Koller Hoi-Cheung Pang Praveen Srinivasan Sebastian Thrun Computer Science.
Lecture outline Support vector machines. Support Vector Machines Find a linear hyperplane (decision boundary) that will separate the data.
Relaxations and Moves for MAP Estimation in MRFs M. Pawan Kumar STANFORDSTANFORD Vladimir KolmogorovPhilip TorrDaphne Koller.
Hierarchical Graph Cuts for Semi-Metric Labeling M. Pawan Kumar Joint work with Daphne Koller.
Measuring Uncertainty in Graph Cut Solutions Pushmeet Kohli Philip H.S. Torr Department of Computing Oxford Brookes University.
Polyhedral Optimization Lecture 3 – Part 3 M. Pawan Kumar Slides available online
Extensions of submodularity and their application in computer vision
MAP Estimation Algorithms in M. Pawan Kumar, University of Oxford Pushmeet Kohli, Microsoft Research Computer Vision - Part I.
Multiplicative Bounds for Metric Labeling M. Pawan Kumar École Centrale Paris École des Ponts ParisTech INRIA Saclay, Île-de-France Joint work with Phil.
Polyhedral Optimization Lecture 3 – Part 2
Approximating Minimum Bounded Degree Spanning Tree (MBDST) Mohit Singh and Lap Chi Lau “Approximating Minimum Bounded DegreeApproximating Minimum Bounded.
Planar Cycle Covering Graphs for inference in MRFS The Typhon Algorithm A New Variational Approach to Ground State Computation in Binary Planar Markov.
Minimizing general submodular functions
© J. Christopher Beck Lecture 5: Project Planning 2.
Multiplicative Bounds for Metric Labeling M. Pawan Kumar École Centrale Paris Joint work with Phil Torr, Daphne Koller.
Rounding-based Moves for Metric Labeling M. Pawan Kumar Center for Visual Computing Ecole Centrale Paris.
Example Question on Linear Program, Dual and NP-Complete Proof COT5405 Spring 11.
Lena Gorelick joint work with O. Veksler I. Ben Ayed A. Delong Y. Boykov.
Learning a Small Mixture of Trees M. Pawan Kumar Daphne Koller Aim: To efficiently learn a.
Discrete Optimization Lecture 2 – Part I M. Pawan Kumar Slides available online
Discrete Optimization Lecture 5 – Part 2 M. Pawan Kumar Slides available online
Discrete Optimization Lecture 4 – Part 2 M. Pawan Kumar Slides available online
Probabilistic Inference Lecture 3 M. Pawan Kumar Slides available online
Algorithms for MAP estimation in Markov Random Fields Vladimir Kolmogorov University College London.
Discrete Optimization in Computer Vision M. Pawan Kumar Slides will be available online
Polyhedral Optimization Lecture 4 – Part 2 M. Pawan Kumar Slides available online
Discrete Optimization Lecture 3 – Part 1 M. Pawan Kumar Slides available online
Approximation Algorithms for Prize-Collecting Forest Problems with Submodular Penalty Functions Chaitanya Swamy University of Waterloo Joint work with.
Fast and accurate energy minimization for static or time-varying Markov Random Fields (MRFs) Nikos Komodakis (Ecole Centrale Paris) Nikos Paragios (Ecole.
Probabilistic Inference Lecture 5 M. Pawan Kumar Slides available online
Dynamic Tree Block Coordinate Ascent Daniel Tarlow 1, Dhruv Batra 2 Pushmeet Kohli 3, Vladimir Kolmogorov 4 1: University of Toronto3: Microsoft Research.
Efficient Discriminative Learning of Parts-based Models M. Pawan Kumar Andrew Zisserman Philip Torr
Optimization - Lecture 4, Part 1 M. Pawan Kumar Slides available online
Tractable Higher Order Models in Computer Vision (Part II) Slides from Carsten Rother, Sebastian Nowozin, Pusohmeet Khli Microsoft Research Cambridge Presented.
Discrete Optimization Lecture 2 – Part 2 M. Pawan Kumar Slides available online
Inference for Learning Belief Propagation. So far... Exact methods for submodular energies Approximations for non-submodular energies Move-making ( N_Variables.
Probabilistic Inference Lecture 2 M. Pawan Kumar Slides available online
Discrete Optimization Lecture 1 M. Pawan Kumar Slides available online
Maximizing Symmetric Submodular Functions Moran Feldman EPFL.
Tightening LP Relaxations for MAP using Message-Passing David Sontag Joint work with Talya Meltzer, Amir Globerson, Tommi Jaakkola, and Yair Weiss.
MAP Estimation of Semi-Metric MRFs via Hierarchical Graph Cuts M. Pawan Kumar Daphne Koller Aim: To obtain accurate, efficient maximum a posteriori (MAP)
Discrete Optimization Lecture 5 – Part 1 M. Pawan Kumar Slides available online
Optimization - Lecture 5, Part 1 M. Pawan Kumar Slides available online
Polyhedral Optimization Lecture 5 – Part 3 M. Pawan Kumar Slides available online
Rounding-based Moves for Metric Labeling M. Pawan Kumar École Centrale Paris INRIA Saclay, Île-de-France.
Introduction of BP & TRW-S
Learning a Region-based Scene Segmentation Model
An Analysis of Convex Relaxations for MAP Estimation
MAP Estimation of Semi-Metric MRFs via Hierarchical Graph Cuts
Discrete Inference and Learning
Presentation transcript:

Probabilistic Inference Lecture 4 – Part 2 M. Pawan Kumar Slides available online

Integer Programming Formulation LP Relaxation and its Dual Convergent Solution for Dual Properties and Computational Issues Outline

Things to Remember Forward-pass computes min-marginals of root BP is exact for trees Every iteration provides a reparameterization

Integer Programming Formulation VaVa VbVb Label l 0 Label l Unary Potentials  a;0 = 5  a;1 = 2  b;0 = 2  b;1 = 4 Labelling f(a) = 1 f(b) = 0 y a;0 = 0y a;1 = 1 y b;0 = 1y b;1 = 0 Any f(.) has equivalent boolean variables y a;i

Integer Programming Formulation VaVa VbVb Unary Potentials  a;0 = 5  a;1 = 2  b;0 = 2  b;1 = 4 Labelling f(a) = 1 f(b) = 0 y a;0 = 0y a;1 = 1 y b;0 = 1y b;1 = 0 Find the optimal variables y a;i Label l 0 Label l 1

Integer Programming Formulation VaVa VbVb Unary Potentials  a;0 = 5  a;1 = 2  b;0 = 2  b;1 = 4 Sum of Unary Potentials ∑ a ∑ i  a;i y a;i y a;i  {0,1}, for all V a, l i ∑ i y a;i = 1, for all V a Label l 0 Label l 1

Integer Programming Formulation VaVa VbVb Pairwise Potentials  ab;00 = 0  ab;10 = 1  ab;01 = 1  ab;11 = 0 Sum of Pairwise Potentials ∑ (a,b) ∑ ik  ab;ik y a;i y b;k y a;i  {0,1} ∑ i y a;i = 1 Label l 0 Label l 1

Integer Programming Formulation VaVa VbVb Pairwise Potentials  ab;00 = 0  ab;10 = 1  ab;01 = 1  ab;11 = 0 Sum of Pairwise Potentials ∑ (a,b) ∑ ik  ab;ik y ab;ik y a;i  {0,1} ∑ i y a;i = 1 y ab;ik = y a;i y b;k Label l 0 Label l 1

Integer Programming Formulation min ∑ a ∑ i  a;i y a;i + ∑ (a,b) ∑ ik  ab;ik y ab;ik y a;i  {0,1} ∑ i y a;i = 1 y ab;ik = y a;i y b;k

Integer Programming Formulation min  T y y a;i  {0,1} ∑ i y a;i = 1 y ab;ik = y a;i y b;k  = [ …  a;i …. ; …  ab;ik ….] y = [ … y a;i …. ; … y ab;ik ….]

One variable, two labels y a;0 y a;1 y a;0  {0,1} y a;1  {0,1} y a;0 + y a;1 = 1 y = [ y a;0 y a;1 ]  = [  a;0  a;1 ]

Two variables, two labels  = [  a;0  a;1  b;0  b;1  ab;00  ab;01  ab;10  ab;11 ] y = [ y a;0 y a;1 y b;0 y b;1 y ab;00 y ab;01 y ab;10 y ab;11 ] y a;0  {0,1} y a;1  {0,1} y a;0 + y a;1 = 1 y b;0  {0,1} y b;1  {0,1} y b;0 + y b;1 = 1 y ab;00 = y a;0 y b;0 y ab;01 = y a;0 y b;1 y ab;10 = y a;1 y b;0 y ab;11 = y a;1 y b;1

In General Marginal Polytope

In General   R (|V||L| + |E||L| 2 ) y  {0,1} (|V||L| + |E||L| 2 ) Number of constraints |V||L| + |V| + |E||L| 2 y a;i  {0,1} ∑ i y a;i = 1y ab;ik = y a;i y b;k

Integer Programming Formulation min  T y y a;i  {0,1} ∑ i y a;i = 1 y ab;ik = y a;i y b;k  = [ …  a;i …. ; …  ab;ik ….] y = [ … y a;i …. ; … y ab;ik ….]

Integer Programming Formulation min  T y y a;i  {0,1} ∑ i y a;i = 1 y ab;ik = y a;i y b;k Solve to obtain MAP labelling y*

Integer Programming Formulation min  T y y a;i  {0,1} ∑ i y a;i = 1 y ab;ik = y a;i y b;k But we can’t solve it in general

Integer Programming Formulation LP Relaxation and its Dual Convergent Solution for Dual Properties and Computational Issues Outline

Linear Programming Relaxation min  T y y a;i  {0,1} ∑ i y a;i = 1 y ab;ik = y a;i y b;k Two reasons why we can’t solve this

Linear Programming Relaxation min  T y y a;i  [0,1] ∑ i y a;i = 1 y ab;ik = y a;i y b;k One reason why we can’t solve this

Linear Programming Relaxation min  T y y a;i  [0,1] ∑ i y a;i = 1 ∑ k y ab;ik = ∑ k y a;i y b;k One reason why we can’t solve this

Linear Programming Relaxation min  T y y a;i  [0,1] ∑ i y a;i = 1 One reason why we can’t solve this = 1 ∑ k y ab;ik = y a;i ∑ k y b;k

Linear Programming Relaxation min  T y y a;i  [0,1] ∑ i y a;i = 1 ∑ k y ab;ik = y a;i One reason why we can’t solve this

Linear Programming Relaxation min  T y y a;i  [0,1] ∑ i y a;i = 1 ∑ k y ab;ik = y a;i No reason why we can’t solve this * * memory requirements, time complexity

One variable, two labels y a;0 y a;1 y a;0  {0,1} y a;1  {0,1} y a;0 + y a;1 = 1 y = [ y a;0 y a;1 ]  = [  a;0  a;1 ]

One variable, two labels y a;0 y a;1 y a;0  [0,1] y a;1  [0,1] y a;0 + y a;1 = 1 y = [ y a;0 y a;1 ]  = [  a;0  a;1 ]

Two variables, two labels  = [  a;0  a;1  b;0  b;1  ab;00  ab;01  ab;10  ab;11 ] y = [ y a;0 y a;1 y b;0 y b;1 y ab;00 y ab;01 y ab;10 y ab;11 ] y a;0  {0,1} y a;1  {0,1} y a;0 + y a;1 = 1 y b;0  {0,1} y b;1  {0,1} y b;0 + y b;1 = 1 y ab;00 = y a;0 y b;0 y ab;01 = y a;0 y b;1 y ab;10 = y a;1 y b;0 y ab;11 = y a;1 y b;1

Two variables, two labels  = [  a;0  a;1  b;0  b;1  ab;00  ab;01  ab;10  ab;11 ] y = [ y a;0 y a;1 y b;0 y b;1 y ab;00 y ab;01 y ab;10 y ab;11 ] y a;0  [0,1] y a;1  [0,1] y a;0 + y a;1 = 1 y b;0  [0,1] y b;1  [0,1] y b;0 + y b;1 = 1 y ab;00 = y a;0 y b;0 y ab;01 = y a;0 y b;1 y ab;10 = y a;1 y b;0 y ab;11 = y a;1 y b;1

Two variables, two labels  = [  a;0  a;1  b;0  b;1  ab;00  ab;01  ab;10  ab;11 ] y = [ y a;0 y a;1 y b;0 y b;1 y ab;00 y ab;01 y ab;10 y ab;11 ] y a;0  [0,1] y a;1  [0,1] y a;0 + y a;1 = 1 y b;0  [0,1] y b;1  [0,1] y b;0 + y b;1 = 1 y ab;00 + y ab;01 = y a;0 y ab;10 = y a;1 y b;0 y ab;11 = y a;1 y b;1

Two variables, two labels  = [  a;0  a;1  b;0  b;1  ab;00  ab;01  ab;10  ab;11 ] y = [ y a;0 y a;1 y b;0 y b;1 y ab;00 y ab;01 y ab;10 y ab;11 ] y a;0  [0,1] y a;1  [0,1] y a;0 + y a;1 = 1 y b;0  [0,1] y b;1  [0,1] y b;0 + y b;1 = 1 y ab;00 + y ab;01 = y a;0 y ab;10 + y ab;11 = y a;1

In General Marginal Polytope Local Polytope

In General   R (|V||L| + |E||L| 2 ) y  [0,1] (|V||L| + |E||L| 2 ) Number of constraints |V||L| + |V| + |E||L|

Linear Programming Relaxation min  T y y a;i  [0,1] ∑ i y a;i = 1 ∑ k y ab;ik = y a;i No reason why we can’t solve this

Linear Programming Relaxation Extensively studied Optimization Schlesinger, 1976 Koster, van Hoesel and Kolen, 1998 Theory Chekuri et al, 2001Archer et al, 2004 Machine Learning Wainwright et al., 2001

Linear Programming Relaxation Many interesting properties Global optimal MAP for trees Wainwright et al., 2001 But we are interested in NP-hard cases Preserves solution for reparameterization Global optimal MAP for submodular energy Chekuri et al., 2001

Linear Programming Relaxation Large class of problems Metric Labelling Semi-metric Labelling Many interesting properties - Integrality Gap Manokaran et al., 2008 Most likely, provides best possible integrality gap

Linear Programming Relaxation A computationally useful dual Many interesting properties - Dual Optimal value of dual = Optimal value of primal

Dual of the LP Relaxation Wainwright et al., 2001 VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi  min  T y y a;i  [0,1] ∑ i y a;i = 1 ∑ k y ab;ik = y a;i

Dual of the LP Relaxation Wainwright et al., 2001 VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi  VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi 11 22 33 44 55 66 11 22 33 44 55 66   i  i =   i ≥ 0

Dual of the LP Relaxation Wainwright et al., 2001 11 22 33 44 55 66 q*(  1 )   i  i =  q*(  2 ) q*(  3 ) q*(  4 )q*(  5 )q*(  6 )   i q*(  i ) Dual of LP  VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi  i ≥ 0 max

Dual of the LP Relaxation Wainwright et al., 2001 11 22 33 44 55 66 q*(  1 )  ii   ii   q*(  2 ) q*(  3 ) q*(  4 )q*(  5 )q*(  6 ) Dual of LP  VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi VaVa VbVb VcVc VdVd VeVe VfVf VgVg VhVh ViVi  i ≥ 0   i q*(  i ) max

Dual of the LP Relaxation Wainwright et al., 2001  ii   ii   max   i q*(  i ) I can easily compute q*(  i ) I can easily maintain reparam constraint So can I easily solve the dual?

Continued in Lecture 5 …