Presentation is loading. Please wait.

Presentation is loading. Please wait.

Discrete Optimization Lecture 2 – Part 2 M. Pawan Kumar Slides available online

Similar presentations


Presentation on theme: "Discrete Optimization Lecture 2 – Part 2 M. Pawan Kumar Slides available online"— Presentation transcript:

1 Discrete Optimization Lecture 2 – Part 2 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online http://cvn.ecp.fr/personnel/pawan/

2 Integer Programming Formulation LP Relaxation Outline

3 Integer Programming Formulation VaVa VbVb Label l 0 Label l 1 2 5 4 2 0 1 1 0 2 Unary Potentials  a;0 = 5  a;1 = 2  b;0 = 2  b;1 = 4 Labeling f(a) = 1 f(b) = 0 y a;0 = 0y a;1 = 1 y b;0 = 1y b;1 = 0 Any f(.) has equivalent boolean variables y a;i

4 Integer Programming Formulation VaVa VbVb 2 5 4 2 0 1 1 0 2 Unary Potentials  a;0 = 5  a;1 = 2  b;0 = 2  b;1 = 4 Labeling f(a) = 1 f(b) = 0 y a;0 = 0y a;1 = 1 y b;0 = 1y b;1 = 0 Find the optimal variables y a;i Label l 0 Label l 1

5 Integer Programming Formulation VaVa VbVb 2 5 4 2 0 1 1 0 2 Unary Potentials  a;0 = 5  a;1 = 2  b;0 = 2  b;1 = 4 Sum of Unary Potentials ∑ a ∑ i  a;i y a;i y a;i  {0,1}, for all V a, l i ∑ i y a;i = 1, for all V a Label l 0 Label l 1

6 Integer Programming Formulation VaVa VbVb 2 5 4 2 0 1 1 0 2 Pairwise Potentials  ab;00 = 0  ab;10 = 1  ab;01 = 1  ab;11 = 0 Sum of Pairwise Potentials ∑ (a,b) ∑ ik  ab;ik y a;i y b;k y a;i  {0,1} ∑ i y a;i = 1 Label l 0 Label l 1

7 Integer Programming Formulation VaVa VbVb 2 5 4 2 0 1 1 0 2 Pairwise Potentials  ab;00 = 0  ab;10 = 1  ab;01 = 1  ab;11 = 0 Sum of Pairwise Potentials ∑ (a,b) ∑ ik  ab;ik y ab;ik y a;i  {0,1} ∑ i y a;i = 1 y ab;ik = y a;i y b;k Label l 0 Label l 1

8 Integer Programming Formulation min ∑ a ∑ i  a;i y a;i + ∑ (a,b) ∑ ik  ab;ik y ab;ik y a;i  {0,1} ∑ i y a;i = 1 y ab;ik = y a;i y b;k

9 Integer Programming Formulation min  T y y a;i  {0,1} ∑ i y a;i = 1 y ab;ik = y a;i y b;k  = [ …  a;i …. ; …  ab;ik ….] y = [ … y a;i …. ; … y ab;ik ….]

10 One variable, two labels y a;0 y a;1 y a;0  {0,1} y a;1  {0,1} y a;0 + y a;1 = 1 y = [ y a;0 y a;1 ]  = [  a;0  a;1 ]

11 Two variables, two labels  = [  a;0  a;1  b;0  b;1  ab;00  ab;01  ab;10  ab;11 ] y = [ y a;0 y a;1 y b;0 y b;1 y ab;00 y ab;01 y ab;10 y ab;11 ] y a;0  {0,1} y a;1  {0,1} y a;0 + y a;1 = 1 y b;0  {0,1} y b;1  {0,1} y b;0 + y b;1 = 1 y ab;00 = y a;0 y b;0 y ab;01 = y a;0 y b;1 y ab;10 = y a;1 y b;0 y ab;11 = y a;1 y b;1

12 In General Marginal Polytope

13 In General   R (|V||L| + |E||L| 2 ) y  {0,1} (|V||L| + |E||L| 2 ) Number of constraints |V||L| + |V| + |E||L| 2 y a;i  {0,1} ∑ i y a;i = 1y ab;ik = y a;i y b;k

14 Integer Programming Formulation min  T y y a;i  {0,1} ∑ i y a;i = 1 y ab;ik = y a;i y b;k  = [ …  a;i …. ; …  ab;ik ….] y = [ … y a;i …. ; … y ab;ik ….]

15 Integer Programming Formulation min  T y y a;i  {0,1} ∑ i y a;i = 1 y ab;ik = y a;i y b;k Solve to obtain MAP labelling y*

16 Integer Programming Formulation min  T y y a;i  {0,1} ∑ i y a;i = 1 y ab;ik = y a;i y b;k But we can’t solve it in general

17 Integer Programming Formulation LP Relaxation Outline

18 Linear Programming Relaxation min  T y y a;i  {0,1} ∑ i y a;i = 1 y ab;ik = y a;i y b;k Two reasons why we can’t solve this

19 Linear Programming Relaxation min  T y y a;i  [0,1] ∑ i y a;i = 1 y ab;ik = y a;i y b;k One reason why we can’t solve this

20 Linear Programming Relaxation min  T y y a;i  [0,1] ∑ i y a;i = 1 ∑ k y ab;ik = ∑ k y a;i y b;k One reason why we can’t solve this

21 Linear Programming Relaxation min  T y y a;i  [0,1] ∑ i y a;i = 1 One reason why we can’t solve this = 1 ∑ k y ab;ik = y a;i ∑ k y b;k

22 Linear Programming Relaxation min  T y y a;i  [0,1] ∑ i y a;i = 1 ∑ k y ab;ik = y a;i One reason why we can’t solve this

23 Linear Programming Relaxation min  T y y a;i  [0,1] ∑ i y a;i = 1 ∑ k y ab;ik = y a;i No reason why we can’t solve this * * memory requirements, time complexity

24 One variable, two labels y a;0 y a;1 y a;0  {0,1} y a;1  {0,1} y a;0 + y a;1 = 1 y = [ y a;0 y a;1 ]  = [  a;0  a;1 ]

25 One variable, two labels y a;0 y a;1 y a;0  [0,1] y a;1  [0,1] y a;0 + y a;1 = 1 y = [ y a;0 y a;1 ]  = [  a;0  a;1 ]

26 Two variables, two labels  = [  a;0  a;1  b;0  b;1  ab;00  ab;01  ab;10  ab;11 ] y = [ y a;0 y a;1 y b;0 y b;1 y ab;00 y ab;01 y ab;10 y ab;11 ] y a;0  {0,1} y a;1  {0,1} y a;0 + y a;1 = 1 y b;0  {0,1} y b;1  {0,1} y b;0 + y b;1 = 1 y ab;00 = y a;0 y b;0 y ab;01 = y a;0 y b;1 y ab;10 = y a;1 y b;0 y ab;11 = y a;1 y b;1

27 Two variables, two labels  = [  a;0  a;1  b;0  b;1  ab;00  ab;01  ab;10  ab;11 ] y = [ y a;0 y a;1 y b;0 y b;1 y ab;00 y ab;01 y ab;10 y ab;11 ] y a;0  [0,1] y a;1  [0,1] y a;0 + y a;1 = 1 y b;0  [0,1] y b;1  [0,1] y b;0 + y b;1 = 1 y ab;00 = y a;0 y b;0 y ab;01 = y a;0 y b;1 y ab;10 = y a;1 y b;0 y ab;11 = y a;1 y b;1

28 Two variables, two labels  = [  a;0  a;1  b;0  b;1  ab;00  ab;01  ab;10  ab;11 ] y = [ y a;0 y a;1 y b;0 y b;1 y ab;00 y ab;01 y ab;10 y ab;11 ] y a;0  [0,1] y a;1  [0,1] y a;0 + y a;1 = 1 y b;0  [0,1] y b;1  [0,1] y b;0 + y b;1 = 1 y ab;00 + y ab;01 = y a;0 y ab;10 = y a;1 y b;0 y ab;11 = y a;1 y b;1

29 Two variables, two labels  = [  a;0  a;1  b;0  b;1  ab;00  ab;01  ab;10  ab;11 ] y = [ y a;0 y a;1 y b;0 y b;1 y ab;00 y ab;01 y ab;10 y ab;11 ] y a;0  [0,1] y a;1  [0,1] y a;0 + y a;1 = 1 y b;0  [0,1] y b;1  [0,1] y b;0 + y b;1 = 1 y ab;00 + y ab;01 = y a;0 y ab;10 + y ab;11 = y a;1

30 In General Marginal Polytope Local Polytope

31 In General   R (|V||L| + |E||L| 2 ) y  [0,1] (|V||L| + |E||L| 2 ) Number of constraints |V||L| + |V| + |E||L|

32 Linear Programming Relaxation min  T y y a;i  [0,1] ∑ i y a;i = 1 ∑ k y ab;ik = y a;i No reason why we can’t solve this

33 Linear Programming Relaxation Extensively studied Optimization Schlesinger, 1976 Koster, van Hoesel and Kolen, 1998 Theory Chekuri et al, 2001Archer et al, 2004 Machine Learning Wainwright et al., 2001

34 Linear Programming Relaxation Many interesting properties Global optimal MAP for trees Wainwright et al., 2001 But we are interested in NP-hard cases Preserves solution for reparameterization Global optimal MAP for submodular energy Chekuri et al., 2001

35 Linear Programming Relaxation Large class of problems Metric Labeling Semi-metric Labeling Many interesting properties - Integrality Gap Manokaran et al., 2008 Most likely, provides best possible integrality gap


Download ppt "Discrete Optimization Lecture 2 – Part 2 M. Pawan Kumar Slides available online"

Similar presentations


Ads by Google