Tyler Park John Colton Haeyeon Yang* Jeff Farrer

Slides:



Advertisements
Similar presentations
High Resolution Imaging structure and morphology phase heterogeneity & defects Electron Diffraction determine crystallography SAED CBED XEDS (energy-dispersive.
Advertisements

Identification of Defects and Secondary Phases in Reactively Sputtered Cu 2 ZnSnS 4 Thin Films Vardaan Chawla, Stacey Bent, Bruce Clemens April 7 th, 2010.
Electron Microscopy for Catalyst Characterization Dr. King Lun Yeung Department of Chemical Engineering Hong Kong University of Science and Technology.
GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,
Tin Based Absorbers for Infrared Detection, Part 2 Presented By: Justin Markunas Direct energy gap group IV semiconductor alloys and quantum dot arrays.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Activities during UK-Japan Young Scientist Workshop Dr Riz Khan Room 31DJ02, x6062, Advanced Technology Institute University.
1 AP 5301 / 8301 Instrumental Methods of Analysis Course Coordinator: Prof. Paul K. Chu Electronic mail: Tel: Fax:
Spectroscopy FNI 1C.
Modeling of Energy States of Carriers in Quantum Dots
Time-Correlated Single Photon Counting (TCSPC) Scott Thalman Brigham Young University Advisor: Dr. John Colton Dr Haeyeon Yang USU Physics Help from Mitch.
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
Raman scattering of a single freestanding rolled up SiGe/Si tube R. Songmuang and O. G. Schmidt Max-Planck-Institut für Festkörperforschung Stuttgart,
InAs on GaAs self assembled Quantum Dots By KH. Zakeri sharif University of technology, Spring 2003.
CBED Patterns - Introduction
Nano-Materials Characterization Yoram Shapira, EE Nano-bio-electronics Growth and Processing Characterization and Analysis Design and Modeling.
Electron Microscopy 1 Electron Microscopy (EM) Applying Atomic Structure Knowledge to Chemical Analysis.
(In,Ga)As/(Al,Ga)As quantum wells on GaAs(110) R. Hey, M. Höricke, A. Trampert, U. Jahn, P. Santos Paul-Drude-Institut für Festkörperelektronik, Berlin.
Basic Nanotechnology EHS Awareness Basics of Chemical and Material Properties—Role of Scale Basics of Chemical and Material Properties—Role of Scale Chemical.
PbSe Nanocrystals (NCs) -from synthesis to applications- by Razvan-Ionut Stoian Oklahoma State University, Department of Physics Motivation General properties.
Electron Microscopes Used to count individual atoms What can electron microscopes tell us? Morphology – Size and shape Topography – Surface features (roughness,
Quantum Electronic Structure of Atomically Uniform Pb Films on Si(111) Tai C. Chiang, U of Illinois at Urbana-Champaign, DMR Miniaturization of.
Microstructure diagnostics of modern materials by transmission electron microscopy – need for advanced diffraction techniques Humboldt University of Berlin,
J.R.Krenn – Nanotechnology – CERN 2003 – Part 2 page 1 NANOTECHNOLOGY Part 2. Electronics The Semiconductor Roadmap Energy Quantization and Quantum Dots.
Other modes associated with SEM: EBIC
D.-A. Luh, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, S. Harvey, R. E. Kirby, T. Maruyama, and C. Y. Prescott Stanford Linear Accelerator.
TEM charcaterization Basic modes – Bright field microscopy – Dark field Microscopy –STEM – EDAX – EELS.
NANO 225 Micro/NanoFabrication Electron Microscopes 1.
Reminders for this week Homework #4 Due Wednesday (5/20) Lithography Lab Due Thursday (5/21) Quiz #3 on Thursday (5/21) – In Classroom –Covers Lithography,
日 期: 指導老師:林克默、黃文勇 學 生:陳 立 偉 1. Outline 1.Introduction 2.Experimental 3.Result and Discussion 4.Conclusion 2.
Tyler Park Jeffrey Farrer John Colton Haeyeon Yang APS March Meeting 2012, Boston.
Microscopia de Iones y Nano-Tecnología Eduardo H. Montoya Rossi.
Epitaxial superconducting refractory metals for quantum computing
Characterizing InGaAs quantum dot chains Tyler Park John Colton Jeff Farrer Ken Clark Jeff Farrer Ken Clark David Meyer Scott Thalman Haeyeon Yang APS.
Growth evolution, adatom condensation, and island sizes in InGaAs/GaAs (001) R. Leon *, J. Wellman *, X. Z. Liao **, and J. Zou ** * Jet Propulsion Laboratory,
Characterization of Nanomaterials…
Center for Materials for Information Technology an NSF Materials Science and Engineering Center Substrate Preparation Techniques Lecture 7 G.J. Mankey.
FNI 2A Tools1 Tools of Nanoscience Microscopy  Optical  Electron SEM TEM  Scanning Probe STM AFM NSOM Spectroscopy  Electromagnetic  Mass  Electron.
CAREER: Synthesis and Electronic/Electrical Properties of Carbon Nanotube Junctions Wenzhi LiFlorida International UniversityDMR One of the objectives.
Radiation effects in nanostructures: Comparison of proton irradiation induced changes on Quantum Dots and Quantum Wells.* R. Leon and G. M. Swift Jet Propulsion.
1 AlCl 3 -induced crystallization of amorphous silicon thin films 指導教授 : 管 鴻 (Hon Kuan) 老師 學生 : 李宗育 (Tsung-Yu Li)
Photoluminescence spectroscopy and transmission electron microscopy imaging of InGaAs quantum dot chains Tyler Park Kenneth Clark David Meyer.
Growth and optical properties of II-VI self-assembled quantum dots
Tunable Passive Devices Keith Tang Supervisor: Sorin Voinigescu.
Confinement of Excitons in Strain-engineered InAs/InGaAs/GaAs Metamorphic Quantum Dots By Shaukat Ali Khattak1,2 Manus Hayne1, Luca Seravalli3, Giovanna.
Tunable band gaps of protein enclosed nanocrystals for high efficiency solar energy conversion Stephen Erickson Trevor Smith Dr. Richard Watt Dr. John.
Substrate dependence of self-assembled quantum dots
Characterization of Nanomaterials 1- Scanning Electron Microscopy (SEM) It is one of the most widely used techniques in the characterization of the morphology,
X-Ray Diffraction Analysis of Ⅲ - Ⅴ Superlattices: Characterization, Simulation and Fitting 1 Xiangyu Wu Enlong Liu Mentor: Clement Merckling EPI Group.
Characterization of mixed films
Outline History(TEM) Background Components Specimen Preparation Imaging method Contrast formation Modifications STEM References.
Transmission Electron Microscope
Department of Electronics
Outline Personal Background The Project Project Background
MBE Growth of Graded Structures for Polarized Electron Emitters
SEMICAPS DIFFRACTIVE SIL
AS Biology Core Principles
Characterizing Multilayer Thin films
Introduction - characterization of materials.
Searching for One of Nature’s Missing Crystal Structures
へき開再成長法により作製された(110)GaAs 量子井戸における表面原子ステップの観察
Annealing effects on photoluminescence spectra of
Surface morphology of p-GaAs
Magnetic control of light-matter coupling for a single quantum dot embedded in a microcavity Qijun Ren1, Jian Lu1, H. H. Tan2, Shan Wu3, Liaoxin Sun1,
Yingjie Ma, Jian Cui*, Yongliang Fan, Zhenyang Zhong, Zuimin Jiang
Nanocharacterization (III)
Ge nanostressors on silicon-on-insulator (SOI)
Nanocharacterization (II)
Types of Microscopy Type Probe Technique Best Resolution Penetration
High resolution transmission electron microscopy (HRTEM) investigations of defect clusters produced in silicon by electron and neutron irradiations Leona.
Presentation transcript:

Tyler Park John Colton Haeyeon Yang* Jeff Farrer APS March Meeting 2013 Baltimore, MD Characterizing epitaxially-grown InGaAs quantum dot chains using transmission electron microscopy Tyler Park John Colton Haeyeon Yang* Jeff Farrer * South Dakota School of Mines

Outline Quantum dots – Growth Quantum dot chains Motivation Transmission Electron Microscopy (TEM) Results

Quantum Dot Growth GaAs GaAs GaAs Substrate Self-Assembled Modified Stranski-Krastanov Method Wetting layer grown at cooler temperature Annealing process added GaAs InGaAs GaAs Substrate GaAs

Quantum Dot Chains STM Images (Uncapped samples) Wetting layer thickness affects QD shape (110) (110) Kim & Yang, Nanotech 19, 475601 (2008)

Quantum Dot Chains Yang accomplished forming QD chains on a non-patterned substrate Dong Jun Kim and Haeyon Yang, Nanotechnology,(2008). Zh. M. Wang, et al., Journal of Applied Physics, (2006). T. V. Hakkarainen et al. Journal of Appl. Phys., (2011).

Motivation Tunable in infrared wavelengths Applications: Optoelectronics Infrared Detectors/Lasers (Fujitsu and Tokyo University (2010), P. Martyniuk and A. Rogalski. (2008)) Quantum Computing (Albert M. Chang. (2001)) Capping layer known to alter nature of dots (D. Awschalom et al. (2002)) Physical measurements

Transmission Electron Microscopy Electron source Apertures Electromagnetic Lenses Sample

Transmission Electron Microscopy Electron source Apertures Electromagnetic Lenses Sample e-beam direct beam diffracted beam

Transmission Electron Microscopy Two-Beam condition Diffraction contrast – strain contrast 220 400 220 000 220 000 220

Transmission Electron Microscopy Cross-sectional and plan view cuts Annealing temp.: 460°C, 480°C, 500°C Analytical transmission electron microscopy (chemical analysis) Parallel electron energy-loss spectroscopy (PEELS) X-ray energy dispersive spectroscopy (XEDS)

Sample Preparation Cross-section Cuts Focus Ion Beam (FIB) – Lift-out method Plan View Cuts Lift-out method Hybrid method Mechanical thinning FIB FIB Mechanically thinned sample QD layer

Results 460°C 480°C In Progress 500°C Cross-section Images ~15 nm ~10 nm Cross-section Images 2-beam conditions Diffraction contrast (Strains) STEM Mass Thickness Contrast HRTEM Measurements Current task, incomplete results Show that dots flatten w/ annealing temperature Chemical Analysis: ~10% Indium in the 500°C sample ~2% Indium in the 460°C sample (redo) ~5% Silicon contaminates! GaAs Cap GaAs InGaAs QD layer In Progress

Results 500°C Plan View Images Measurements 2-beam conditions Diffraction contrast (Strains) Measurements Separation of chains/dots Dot dimensions 500°C ~90 nm ~30nm

Conclusions Dots have formed as expected Capping layer has little effect Chains in all 3 samples Measurements (height x width x chain separation): 460°C: 15nm x 30nm x 70nm 480°C: ??nm x 35nm x 90nm 500°C: 10nm x 30nm x 90nm Chemical Composition Estimated to be 10% In, 35% Ga, 50% As, 5% Si (from the sample annealed at 500°C) Special thanks to Felipe Rivera and Thomas McConkie for assistance w/ lift-out