LECTURE 2 Understanding Relationships Between 2 Numerical Variables

Slides:



Advertisements
Similar presentations
Chapter 3 Examining Relationships Lindsey Van Cleave AP Statistics September 24, 2006.
Advertisements

Section 6.1: Scatterplots and Correlation (Day 1).
Chapter 3 Examining Relationships
Chapter 41 Describing Relationships: Scatterplots and Correlation.
Looking at data: relationships Scatterplots IPS chapter 2.1 © 2006 W. H. Freeman and Company.
CHAPTER 3 Describing Relationships
Chapter 7 Scatterplots, Association, Correlation Scatterplots and correlation Fitting a straight line to bivariate data © 2006 W. H. Freeman.
Chapter 7 Scatterplots and Correlation Scatterplots: graphical display of bivariate data Correlation: a numerical summary of bivariate data.
Association between 2 variables We've described the distribution of 1 variable in Chapter 1 - but what if 2 variables are measured on the same individual?
Relationships Scatterplots and correlation BPS chapter 4 © 2006 W.H. Freeman and Company.
Chapter 3: Examining relationships between Data
Scatterplots. Learning Objectives By the end of this lecture, you should be able to: – Describe what a scatterplot is – Be comfortable with the terms.
LECTURE UNIT 7 Understanding Relationships Among Variables Scatterplots and correlation Fitting a straight line to bivariate data.
Looking at data: relationships Scatterplots IPS chapter 2.1 © 2006 W. H. Freeman and Company.
Chapter 6 Scatterplots and Correlation Chapter 7 Objectives Scatterplots  Scatterplots  Explanatory and response variables  Interpreting scatterplots.
IPS Chapter 2 DAL-AC FALL 2015  2.1: Scatterplots  2.2: Correlation  2.3: Least-Squares Regression  2.4: Cautions About Correlation and Regression.
Examining Relationships Scatterplots
Exploring Relationships Between Variables Chapter 7 Scatterplots and Correlation.
Objectives (IPS Chapter 2.1)
Notes Bivariate Data Chapters Bivariate Data Explores relationships between two quantitative variables.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 3 Describing Relationships 3.1 Scatterplots.
Objectives 2.1Scatterplots  Scatterplots  Explanatory and response variables  Interpreting scatterplots  Outliers Adapted from authors’ slides © 2012.
Chapter 4 Scatterplots and Correlation. Explanatory and Response Variables u Interested in studying the relationship between two variables by measuring.
Chapter 7 Scatterplots, Association, and Correlation.
Association between 2 variables We've described the distribution of 1 variable - but what if 2 variables are measured on the same individual? Examples?
Relationships Scatterplots and correlation BPS chapter 4 © 2006 W.H. Freeman and Company.
Chapter 4 - Scatterplots and Correlation Dealing with several variables within a group vs. the same variable for different groups. Response Variable:
3.2: Linear Correlation Measure the strength of a linear relationship between two variables. As x increases, no definite shift in y: no correlation. As.
April 1 st, Bellringer-April 1 st, 2015 Video Link Worksheet Link
Chapter 3-Examining Relationships Scatterplots and Correlation Least-squares Regression.
Chapter 4 Scatterplots and Correlation. Chapter outline Explanatory and response variables Displaying relationships: Scatterplots Interpreting scatterplots.
Relationships Scatterplots and correlation BPS chapter 4 © 2006 W.H. Freeman and Company.
Relationships Scatterplots and Correlation.  Explanatory and response variables  Displaying relationships: scatterplots  Interpreting scatterplots.
Notes Chapter 7 Bivariate Data. Relationships between two (or more) variables. The response variable measures an outcome of a study. The explanatory variable.
The Practice of Statistics for Business and Economics Third Edition David S. Moore George P. McCabe Layth C. Alwan Bruce A. Craig William M. Duckworth.
Lecture 8 Sections Objectives: Bivariate and Multivariate Data and Distributions − Scatter Plots − Form, Direction, Strength − Correlation − Properties.
Lecture 4 Chapter 3. Bivariate Associations. Objectives (PSLS Chapter 3) Relationships: Scatterplots and correlation  Bivariate data  Scatterplots (2.
Lecture 3 – Sep 3. Normal quantile plots are complex to do by hand, but they are standard features in most statistical software. Good fit to a straight.
Statistics for Business and Economics Module 2: Regression and time series analysis Spring 2010 Lecture 2: Examining the relationship between two quantitative.
Scatter plots Adapted from 350/
Scatter Plots. Standard: 8.SP.1 I can construct and interpret scatterplots.
3. Relationships Scatterplots and correlation
Exploring Relationships Between Variables
CHAPTER 3 Describing Relationships
CHAPTER 7 LINEAR RELATIONSHIPS
Chapter 3: Describing Relationships
Exploring Relationships Between Variables
The Practice of Statistics in the Life Sciences Fourth Edition
Chapter 3: Describing Relationships
Chapter 2 Looking at Data— Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
Chapter 3: Describing Relationships
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
Chapter 3 Scatterplots and Correlation.
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
Association between 2 variables
CHAPTER 3 Describing Relationships
CHAPTER 3 Describing Relationships
Association between 2 variables
Scatterplots.
CHAPTER 3 Describing Relationships
Correlation/regression using averages
Image from Minitab Website
Presentation transcript:

LECTURE 2 Understanding Relationships Between 2 Numerical Variables 1 Scatterplots and correlation 2 Fitting a straight line to bivariate data

Objectives Scatterplots Explanatory (independent) and response (dependent) variables Interpreting scatterplots Outliers Categorical variables in scatterplots

Focus on Three Features of a Scatterplot Look for an overall pattern regarding … Shape - ? Approximately linear, curved, up-and-down? Direction - ? Positive, negative, none? Strength - ? Are the points tightly clustered in the particular shape, or are they spread out? … and deviations from the overall pattern: Outliers 

Explanatory and response variables A response variable measures or records an outcome of a study. An explanatory variable explains changes in the response variable. Typically, the explanatory or independent variable is plotted on the x axis, and the response or dependent variable is plotted on the y axis. Explanatory (independent) variable: number of beers Response (dependent) variable: blood alcohol content x y An example of a study in which you are looking at the effects of number of beers on blood alcohol content. If you think about it, the response is obviously an increase in blood alcohol, and we want see if we can explain it by the number of beers drunk. Always put the explanatory variable on the x axis and response variable on the y axis.

Making Scatterplots House Price Square Feet is bivariate data: Excel: Insert scatterplot MegaStat: Correlation/Regression - Scatterplot

Form and direction of an association Linear No relationship Nonlinear

Positive association: High values of one variable tend to occur together with high values of the other variable. Negative association: High values of one variable tend to occur together with low values of the other variable. An example of a study in which you are looking at the effects of number of beers on blood alcohol content. If you think about it, the response is obviously an increase in blood alcohol, and we want see if we can explain it by the number of beers drunk. Always put the explanatory variable on the x axis and response variable on the y axis.

No relationship: X and Y vary independently No relationship: X and Y vary independently. Knowing X tells you nothing about Y. One way to think about this is to remember the following: The equation for this line is y = 5. x is not involved.

Strength of the association The strength of the relationship between the two variables can be seen by how much variation, or scatter, there is around the main form. With a strong relationship, you can get a pretty good estimate of y if you know x. With a weak relationship, for any x you might get a wide range of y values.

This is a weak relationship This is a weak relationship. For a particular state median household income, you can’t predict the state per capita income very well. This is a very strong relationship. The daily amount of gas consumed can be predicted quite accurately for a given temperature value.

How to scale a scatterplot Same data in all four plots Using an inappropriate scale for a scatterplot can give an incorrect impression. For greatest detail, both variables should be given a similar amount of space: Plot roughly square Points should occupy all the plot space (no blank space) For most accurate the Y-axis should have a 0 origin.

Outliers An outlier is a data value that has a very low probability of occurrence (i.e., it is unusual or unexpected). In a scatterplot, outliers are points that fall outside of the overall pattern of the relationship.

Outliers Not an outlier: The upper right-hand point here is not an outlier of the relationship—It is what you would expect for this many beers given the linear relationship between beers/weight and blood alcohol. It is however an outlier for both X and Y values This point is not in line with the others, so it is an outlier of the relationship. It is also an X outlier but not a Y outlier

IQ score and Grade point average Describe in words what this plot shows. Describe the direction, shape, and strength. Are there outliers? What is the deal with these people?

Categorical variables in scatterplots Often, things are not simple and one-dimensional. We need to group the data into categories to reveal trends. What may look like a positive linear relationship is in fact a series of negative linear associations. Plotting different habitats in different colors allows us to make that important distinction.