S. Stahl: Cryogenic Electronics in Ion Traps Part I S. Stahl, CEO Stahl-Electronics Cryogenic Electronics in Ion Traps.

Slides:



Advertisements
Similar presentations
Gregynog QIP meeting QIP Experiments with ions, atoms and molecules Christopher Foot, University of Oxford
Advertisements

Ion-Induced Instability of Diocotron Modes In Magnetized Electron Columns Andrey Kabantsev University of California at San Diego Physics Department Nonneutral.
Control Systems around Penning trap mass spectrometry Mikhail Goncharov CS-Workshop 2013 GSI, Darmstadt STORED AND COOLED IONS DIVISION.
Orbitrap Mass Analyser - Overview and Applications in Proteomics
Atomic masses – Competition worldwide K. Blaum, Phys. Rep. 425, 1-78 (2006) Penning-trap mass spectrometry groups for stable masses: D. Pritchard, MIT.
FC-MS from Teledyne Isco CombiFlash ® a Name You Can Rely On.
Interplay Between Electronic and Nuclear Motion in the Photodouble Ionization of H 2 T J Reddish, J Colgan, P Bolognesi, L Avaldi, M Gisselbrecht, M Lavollée,
Penning-Trap Mass Spectrometry for Neutrino Physics
Vibrational Spectroscopy of Cold Molecular Ions Ncamiso Khanyile Ken Brown Lab School of Chemistry and Biochemistry June 2014.
Rotating Wall/ Centrifugal Separation John Bollinger, NIST-Boulder Outline ● Penning-Malmberg trap – radial confinement due to angular momentum ● Methods.
Marina Quintero-Pérez Paul Jansen Thomas E. Wall Wim Ubachs Hendrick L. Bethlem.
Sanja Risticevic Chem 323 Poster Presentation Quadrupole Ion Trap Mass Spectrometry.
大阪大学 大学院基礎工学研究科 占部研究室 田中 歌子
electrostatic ion beam trap
Ion-trap quantum computation Summer School of CQIQC 2012 Laser Lab Prof. Vasant Natarajan Department of Physics Indian Institute of Science Bangalore May.
Geonium A Fake but Useful Atom BoBo. Overview What is Geonium and why is it useful? A little bit of history What is a Penning trap? Penning trap components.
Spectrap Electronics Stefan Stahl measurements by Stefan Stahl & Zoran Angelkovic Latest result of commissioning and tests.
The ion trap facility SHIPTRAP at GSI Status and Perspectives Michael Block for the SHIPTRAP collaboration.
Mass Spectroscopy Mass Spectrometry ä Most useful tool for molecular structure determination if you can get it into gas phase ä Molecular weight of.
Quantum Computing with Trapped Ion Hyperfine Qubits.
M. Vogel for the SPECTRAP collaboration PRECISION SPECTROSCOPY ON HIGHLY CHARGED IONS.
Simple quantum algorithms with an electron in a Penning Trap David Vitali, Giacomo Ciaramicoli, Irene Marzoli, and Paolo Tombesi Dip. di Matematica e.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Testing the Penning trap (operated as a Paul trap)
Mass Spectrometry.
Cyclotron Resonance and Faraday Rotation in infrared spectroscopy
of 34 Atomic Ions in Penning Traps for Quantum Information Processing Danny Segal QOLS Group, Blackett Laboratory. Current group members: R.
1 Cold molecules Mike Tarbutt LMI Lecture, 05/11/12.
Penning Traps and Strong Correlations John Bollinger NIST-Boulder Ion Storage group Wayne Itano, David Wineland, Joseph Tan, Pei Huang, Brana Jelenkovic,
Preparing antihydrogen at rest for the free fall in Laurent Hilico Jean-Philippe Karr Albane Douillet Vu Tran Julien Trapateau Ferdinand Schmidt Kaler.
Future Penning Trap Experiments at GSI / FAIR – The HITRAP and MATS Projects K. Blaum 1,2 and F. Herfurth 1 for the HITRAP and MATS Collaboration 1 GSI.
Spectrap Electronics Evaluation of Cryogenic Components Begin 2009 Stefan Stahl measurements by Stefan Stahl & Zoran Angelkovic.
Generation of Mesoscopic Superpositions of Two Squeezed States of Motion for A Trapped Ion Shih-Chuan Gou ( 郭西川 ) Department of Physics National Changhua.
Lecture 2:Research frontiers 1 9/9/ FYPC Most recent long range planning reports: FYPC (Canada), NSAC (USA) Collision products at RHIC.
Collinear laser spectroscopy of 42g,mSc
Determination of fundamental constants using laser cooled molecular ions.
Kenneth Brown, Georgia Institute of Technology. Cold Molecular Ions 15  m Ca + X + ?
Preparation of an isomerically pure beam and future experiments Outline TAS Workshop, Caen, March 30-31, 2004 Klaus Blaum for the ISOLTRAP Collaboration.
Zoran Andjelkovic Johannes Gutenberg Universität Mainz GSI Darmstadt Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei (Helmholtz.
Y Z Bai, H Yin, L Liu, D Y Tan, Z B Zhou Center for Gravitational Experiments, School of Physics, Huazhong Univ. of Science &
Experiments with a single electron in storage ring T. Shaftan Fermilab, 2/21/2012.
Calculation of the beam dynamics of RIKEN AVF Cyclotron E.E. Perepelkin JINR, Dubna 4 March 2008.
Contribution of Penning trap mass spectrometry to neutrino physics Szilárd Nagy MPI-K Heidelberg, Germany New Instruments for Neutrino Relics and Mass,
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
Stefan Truppe MM-Wave Spectroscopy and Determination of the Radiative branching ratios of 11 BH for Laser Cooling Experiments.
Molecular Deceleration Georgios Vasilakis. Outline  Why cold molecules are important  Cooling techniques  Molecular deceleration  Principle  Theory.
TRIGA-TRAP High-precision mass measurements on neutron-rich nuclides and actinides November, 18 th Jens Ketelaer 1 Outline: Motivation Mass measurements.
Lecture 3 16/9/2003 Recall Penning Trap orbits cylindrical coordinates: ( , ,z); B = constant along z radial (  ) and axial (z) electric.
A mass-purification method for REX beams
Probe measurements on the GOLEM tokamak Vojtech Svoboda 1, Miglena Dimitrova 2, Jan Stockel 1,2 1 Faculty of Nuclear Physics and Physical Engineering,
Nanuf03, Bucharest, Stefan Kopecky Traps for fission product ions at IGISOL Experimental Facilities Mass Measurements Status and Future Perspectives.
Outline Sebastian George Tokyo 2007 High-Precision Mass Spectrometry
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
高精度分光を目指した CaH + の 生成とトラップ 富山大学・理 森脇喜紀. Spectroscopy of 40 CaH + the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2)
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
Fiber-integrated Point Paul Trap Tony Hyun Kim 1, Peter F. Herskind 1, Tae-Hyun Kim 2, Jungsang Kim 2, Isaac L. Chuang 1 1 Center for Ultracold Atoms,
TRI  P RFQ design, simulations and tests E. Traykov TRI  P project and facility RFQ tests and design Simulations Conclusion TRI  P Group: G.P. Berg,
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
TRIGA-SPEC: Developement platform for MATS and LaSpec at FAIR Double-beta transition Q-value measurements with TRIGA-TRAP NUSTAR Meeting Christian.
Michael Dworschak, GSI for the SHIPTRAP collaboration
The WITCH Experiment 5th International Symposium on Symmetries in Subatomic Physics June 18-22, 2012 KVI, Groningen G. Ban 1, M. Breitenfeldt 2, V. De.
Precision Tests of Fundamental Interactions with Ion Trap Experiments
Traps for antiprotons, electrons and positrons in the 5 T and 1 T magnetic fields G. Testera & Genoa group AEGIS main magnetic field (on axis) : from Alexei.
One way to improve first class mass ISOLTRAP
Muon Spectroscopy WS, Villigen Nuclear charge radii measurements by collinear laser spectroscopy and Penning trap g-factor experiments: The need for.
Mass Spectroscopy. Mass Spectroscopy Mass Spectrometry Most useful tool for molecular structure determination if you can get it into gas phase Molecular.
Diatomic molecules
Gross Properties of Nuclei
Fiber-coupled Point Paul Trap
Presentation transcript:

S. Stahl: Cryogenic Electronics in Ion Traps Part I S. Stahl, CEO Stahl-Electronics Cryogenic Electronics in Ion Traps

S. Stahl: Cryogenic Electronics in Ion Traps Part I Outline I. Principles of Ion Traps 1. Penning Traps 2. Paul Traps 3. Kingdon Trap 4. Trap Applications in Science and Industry II. Cryogenic Traps 1. Why Cryogenic ? 2. Precision Measurements in Traps 2.1 Magnetic Moments 2.2 Mass Measurements 2.3 Fundamental Constants III. Non-destructive Particle Detection 1. Why non-destructive detection? 2. How does it work? 3. Sensitivity improvement 4. Resistive Cooling 5. Detection of cold particles IV. Design of Cold Amplifiers 1. Which Semiconductors are suitable? 2. Typical Amplifier Design for Ion Traps 3. Anchoring and Cabling 4. Implemention Examples V. Other Components : Filters, Switches

S. Stahl: Cryogenic Electronics in Ion Traps Part I Part I Principles of Ion Traps 1.Penning Trap 2.Paul Trap 3.Kingdon Trap 4.Trap Applications in Science and Industry

S. Stahl: Cryogenic Electronics in Ion Traps Part I 1. Penning Trap  Lorentz-force: radial confinement free cyclotron motion:  Electrostatic potential: axial confinement  leads to axial oscillation Charged Particle Mass m, Charge q

S. Stahl: Cryogenic Electronics in Ion Traps Part I Implementation: Hyperbolical Trap Magnetic field =>Advantage: harmonic motion (frequency independent of energy)

S. Stahl: Cryogenic Electronics in Ion Traps Part I Resulting ion motion Axial Motion Reduced Cyclotron Motion Magnetron Drift Problem Magnetron-Motion: Inherently unstable 3 degrees of freedom: Energy: 0... eV... keV ~1MHz ~10kHz ~10MHz

S. Stahl: Cryogenic Electronics in Ion Traps Part I Manipulation of Motions - Excitation: electric dipole ac fields increase amplitude / radii => applying  z,  +,  - radio frequency field => heating until loss of particles -Cooling: Laser cooling, if optical transition exists ( < Millikelvin) Resistive Cooling ( ~ few Kelvin) Sympathetic Cooling (~ few Kelvin to Millikelvin) -Magnetron Centering Motional Sidebands (  + +  -,  z +  - ), or phase-defined  - („Magnetron Cooling“) Rotating Wall (large ion numbers) Lit: Werth, Gheorghe, Major : Charged Particle Traps, published by Springer

S. Stahl: Cryogenic Electronics in Ion Traps Part I Dipole excitation: electric dipole field in z or r-direction

S. Stahl: Cryogenic Electronics in Ion Traps Part I Quadrupole excitation: electric quadrupole field in r-z direction or radial plane

S. Stahl: Cryogenic Electronics in Ion Traps Part I Rotating Wall drive: => rotating electric wall in radial plane centers particles A B CD 90° degrees phase shifted sine signals Lit.: X.-P. Huang, F. Anderegg, et al., Phys. Rev. Lett. 78, 875 (1997) S. Bharadia, M. Vogel, D.M. Segal, R.C. Thompson, Dynamics of laser-cooled Ca+ ions in a Penning trap with a rotating wall; submitted to Applied Physics B (applies rather for multiparticle/plasma regime)

S. Stahl: Cryogenic Electronics in Ion Traps Part I Typical Penning Trap Parameters B 0 = 0.1 T.... 6T (typical in science)... 20T U 0 = 2V.. 200V Stored particles: from lightest electrons/positrons, to heaviest organic molecules (e.g. m = 10‘000u) storage times 1sec year (cryogenic systems) number of particles: one to several millions superconducting normal-conducting (water-cooled) Magnets (heavier particles -> high fields required) (low voltages: patch effect problems) permanent (up to 2T)

S. Stahl: Cryogenic Electronics in Ion Traps Part I Penning Trap Variants - classical hyperpolical electrodes - cubic type trap (chemistry) A. Marshall et al. Rev. Mass. Spec. 17, 1 (1998). - 3pole-Brown-Gabrielse-type trap L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986). Laser, Microwaves, Ions,... B-field

S. Stahl: Cryogenic Electronics in Ion Traps Part I Penning Trap: Some Real-world designs Precision trap for single-ion mass analysis (GSI / Univ. Mainz, Triga) Precision trap for single-ion g-factor determinations (Univ. Mainz) „Shiptrap“ for mass analysis of short-lived isotopes (GSI)

S. Stahl: Cryogenic Electronics in Ion Traps Part I Example Open Endcap Structure: KATRIN-Trap (commissioning ) -Experiment KATRIN, Karlsruhe -large trap (72mm diam.), open structure -operated at T = 77K -„non-precision“ trap

S. Stahl: Cryogenic Electronics in Ion Traps Part I Planar Trap Marzoli et al. Experimental and theoretical challenges for the trapped electron quantum computer J. Phys. B: At. Mol. Opt. Phys. 42 (2009) (11pp) Goldman and Gabrielse: Optimized planar Penning traps for quantum-information studies Phys. Rev. A 81, (2010)

S. Stahl: Cryogenic Electronics in Ion Traps Part I Planar Trap: Easy Access for Photons and Scalability Open structure allows easy access with Lasers, Microwaves etc. Interesting for Quantum Computing, for Mass Analysis, etc. “100 traps on 1 Euro“

S. Stahl: Cryogenic Electronics in Ion Traps Part I Planar Traps: Implementation approaches Schmidt-Kaler et al. Multiple ring electrode structures multi-layer PCB on board filters easy fabrication structures > µm QUELE-Project

S. Stahl: Cryogenic Electronics in Ion Traps Part I 2. Paul Traps / Quadrupole Ion Traps metallic electrodes - No magnetic field needed - high (1kV) AC fields needed - problem RF-heating => cooling technique needed (like: buffer gas cooling, strong laser cooling)  Resulting macromotion in a pseudo potential of a few eV => 3D confinement

S. Stahl: Cryogenic Electronics in Ion Traps Part I Paul Traps: Many different shapes exist simple ring (ground around is second electrode) Paul-Straubel-Type Trapped particles Quadrupolar Rods hyperbolic shape

S. Stahl: Cryogenic Electronics in Ion Traps Part I 3. Kingdon Trap Lit: Blümel, R (1995). "Dynamic Kingdon trap". Physical Review A 51 (1): R30–R33. doi: /PhysRevA.51.R30 Hu, Noll, Li, Makarov, Hardman, Graham Cooks R (2005): "The Orbitrap: a new mass spectrometer". Journal of mass spectrometry : JMS 40 (4): 430–43. doi: /jms.856 Pure Electrostatic Trap => no (expensive) magnet needed Kingdon Trap Advantage: very simple Disadvantage: Short Storage Times modern variant: Orbitrap Improved version, Longer Storage time Important tool in analytical mass spectrometry

S. Stahl: Cryogenic Electronics in Ion Traps Part I 4. Trap Applications in Science and Industry Industry: Mass Analysis in Chemistry, Biology, Environmental Analytics -Paul Traps / Mass Filters -Penning Traps (specially FT-ICR-Traps) Science / Fundamental Research: -Paul Traps Quantum Optics, Frequency Standards, Atomic Physics,... -Penning Traps Fundamental constants, Laser-spectroscopy, g-factor mass references and..... Lit: Werth, Gheorghe, Major : Charged Particle Traps, published by Springer

S. Stahl: Cryogenic Electronics in Ion Traps Part I Mass Measurements in Penning Traps Courtesy Klaus Blaum

S. Stahl: Cryogenic Electronics in Ion Traps Part I - End of part I -

S. Stahl: Cryogenic Electronics in Ion Traps Part I Thanks for your attention

S. Stahl: Cryogenic Electronics in Ion Traps Part I g-factor setup Mainz: vertical 4K- dewar setup (g-factor, Mainz) g-factor trap 4K-axial amplifier 4K-broadband FT-ICR amplifier ( Mainz 2004 ) 4K-electronics section