STRUCTURE AND ROTATIONAL DYNAMICS OF ISOAMYL ACETATE AND METHYL PROPIONATE STUDIED BY MICROWAVE SPECTROSCOPY W.STAHL, H. V. L. NGUYEN, L. SUTIKDJA, D.

Slides:



Advertisements
Similar presentations
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Advertisements

David Wilcox Purdue University Department of Chemistry 560 Oval Dr. West Lafayette, IN
A fitting program for molecules with two equivalent methyl tops and C 2v point-group symmetry at equilibrium: Application to existing microwave, millimeter,
Microwave spectroscopy of biomimetics molecules Isabelle KLEINER Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France Nice,
The microwave spectrum of partially deuterated species of dimethyl ether D. Lauvergnat, a L. Margulès, b R. A. Motyenko, b J.-C. Guillemin, c and L. H.
Microwave spectroscopy of 2-furancarboxylic acid Roman A. Motiyenko, Manuel Goubet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University Lille.
Hamiltonians for Floppy Molecules (as needed for FIR astronomy) A broad overview of state-of-the-art successes and failures for molecules with large amplitude.
Submillimeter-wave Spectroscopy of 13 C 1 -Methyl formate [H 13 COOCH 3 ] in the Ground State Atsuko Maeda, Ivan Medvedev, Eric Herbst, Frank C. De Lucia,
Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
The torsional spectrum of disilane N. Moazzen-Ahmadi, University of Calgary V.-M. Horneman, University of Oulu, Finland.
Rovibronic Analysis of the State of the NO 3 Radical Henry Tran, Terrance J. Codd, Dmitry Melnik, Mourad Roudjane, and Terry A. Miller Laser Spectroscopy.
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
Chirality of and gear motion in isopropyl methyl sulfide: Fourier transform microwave study Yoshiyuki Kawashima, Keisuke Sakieda, and Eizi Hirota* Kanagawa.
Outline 1. Introduction 2. User community and accuracy needs 3. Which large-amplitude motions 4. Which tools = which sym. operations 5. Example (in progress)
ROTATIONAL SPECTRUM AND LARGE AMPLITUDE MOTIONS OF 3,4-, 2,5- and 3,5- DIMETHYLBENZALDEHYDE I. KLEINER Laboratoire Interuniversitaire des Systèmes Atmosphériques.
Molecular Spectroscopy Symposium June 2009 The Submillimeter Spectrum of the Ground Torsional State of CH 2 DOH J.C. PEARSON, C.S. BRAUER, S.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
Physique des Lasers, Atomes et Molécules
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Rotational spectroscopy of two telluric compounds : vinyl- and ethyl-tellurols R.A. MOTIYENKO, L. MARGULES, M. GOUBET Laboratoire PhLAM, CNRS UMR 8523,
Atusko Maeda, Ivan Medvedev, Eric Herbst,
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
Analysis of the microwave spectrum of the three-top molecule trimethoxylmethane L. Coudert, a G. Feng, b and W. Caminati b a Laboratoire Interuniversitaire.
The Microwave Spectrum of Monodeuterated Acetamide CH 2 DC(=O)NH 2 I. A. Konov, a L. H. Coudert, b C. Gutle, b T. R. Huet, c L. Margulès, c R. A. Motiyenko,
Reinvestigation of the ground and first torsional states of methylformate M. Carvajal, Universidad of Huelva (Spain) F. Willaert and J. Demaison, Université.
Conformational Flexibility in Hydrated Sugars: The Glycolaldehyde-Water Complex Juan-Ramon Aviles-Moreno, Jean Demaison and Thérèse R. Huet Laboratoire.
1 The rotational spectrum of 13 CH 3 NH 2 up to 1 THz Roman A. Motiyenko, Laurent Margulès PhLAM, Université Lille 1 Vadim Ilyushin Institute of Radio.
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Determining the Tunneling Path of the Ar-CHF 3 Complex L. Coudert, a W. Caminati, b A. Maris, b P. Ottaviani, b and A. C. Legon c a Laboratoire Interuniversitaire.
Unusual Internal Rotation Coupling in the Microwave Spectrum of Pinacolone Yueyue Zhao 1, Ha Vinh Lam Nguyen 2, Wolfgang Stahl 1, Jon T. Hougen 3 1 Institute.
THEORETICAL INVESTIGATION OF LARGE AMPLITUDE MOTION IN THE METHYL PEROXY RADICAL Gabriel Just, Anne McCoy and Terry Miller The Ohio State University.
A NEW PROGRAM FOR NON- EQUIVALENT TWO-TOP INTERNAL ROTORS WITH A C s FRAME Isabelle KLEINER Laboratoire Interuniversitaire des Systèmes Atmosphériques.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
Torsional Splitting in the Rotational Spectrum from 8 to 650 GHz of the Ground State of 1,1-Difluoroacetone L. Margulès, R. A. Motiyenko, Université de.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
P. JANSEN, W. UBACHS, H. L. BETHLEM
Spectroscopy of the ground, first and second excited torsional states of acetaldehyde from 0.05 to 1.6 THz. Ivan Smirnov a, Eugene Alekseev a, Vadim Ilyushin.
A New Hybrid Program For Fitting Rotationally Resolved Spectra Of methylamine-like Molecules: Application to 2-Methylmalonaldehyde Isabelle Kleiner a and.
 Small molecules forming the elementary blocks of biomolecules: amino acids, small peptides, nucleic acids, sugars… Can serve as validation tools relatively.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Analysis of the rotation-torsion spectrum of CH 2 DOH within the e 0, e 1, and o 1 torsional levels L. H. Coudert, a John C. Pearson, b Shanshan Yu, b.
What is internal rotation ? The methyl group can turn relatively to the rest of the molecule and this large amplitude motion is hindered by a three-fold.
Analysis of bands of the 405 nm electronic transition of C3Ar
NEW MICROWAVE SPECTRUM AND GLOBAL FIT OF METHYL ACETATE GROUND STATE
Isabelle Kleinera and Jon T. Hougenb
MICROWAVE AND FIR SPECTROSCOPY OF DIMETHYLSULFIDE IN THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES V. Ilyushin1, I. Armieieva1, O. Dorovskaya1,
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
MICROWAVE SPECTROSCOPY OF 2-PENTANONE
THE TORSIONAL FUNDAMENTAL BAND AND ROTATIONAL SPECTRA UP TO 940 GHZ OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE V.V. Ilyushin1,
THE MILLIMETER-WAVE SPECTRUM OF VINYL ACETATE
MILLIMETER WAVE SPECTRUM OF NITROMETHANE
Isabelle Kleinera and Jon T. Hougenb
Remeasurement* of the Microwave Spectrum of
How methyl tops talk with each other
THE MILLIMETER-WAVE SPECTRUM OF METHACROLEIN
Methylstyrenes – Microwave Spectroscopy
IAM(-LIKE) Tunneling Matrix Formalism for One- and Two-Methyl-Top Molecules Based on the Extended Permutation-Inversion Group Idea and Its Application.
Analysis of torsional splitting in the ν8 band of propane near 870
Methylindoles – Microwave Spectroscopy
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
The torsional spectrum of doubly deuterated methanol CHD2OH
F H F O Semiexperimental structure of the non rigid BF2OH molecule (difluoroboric acid) by combining high resolution infrared spectroscopy and ab initio.
The Rotational Spectrum and Conformational Structures of Methyl Valerate LAM NGUYEN Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)
Presentation transcript:

STRUCTURE AND ROTATIONAL DYNAMICS OF ISOAMYL ACETATE AND METHYL PROPIONATE STUDIED BY MICROWAVE SPECTROSCOPY W.STAHL, H. V. L. NGUYEN, L. SUTIKDJA, D. JELISAVAC, H. MOUHIB Institut fur Physikalische Chemie, Raum Aachen, Germany I. KLEINER Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS, Universités Paris Est et Paris Diderot, Créteil, France

Objectives Study relatively large organic molecules (esters and ketones) to obtain very precise molecular structures and compare with ab initio calculations Fruit esters and odorant molecules Relationship odor-molecular structure ? A complex issue …

Large Amplitude Motion LAM Internal rotation Nitrogen inversion tunneling W. Stahl operation – 13 molecules studied Diethyl amine Nguyen and Stahl J. Chem. Phys. 135, (2011).

Internal rotation C s : methyl acetate C 1 : isoamyl acetate C s : methyl propionate Jelisavac et al JMS.(2009). Tudorie et al JMS 2011 Nguen, Stahl JMS 2010 Nguen and Stahl ChemPhysChem 2011 Nguyen et al Mol. Phys.2010

Internal rotation Frequency AEAAAE EAEE* EE L. NGUYEN

Experimental technique at Aachen Molecular beam Fourier transform microwave (MB-FTMW) spectrometers Frequency ranges: 4 to 26.5 GHz (big cavity) 26.5 to 40 GHz (small cavity)

High resolution mode Experimental technique Two different modes of the spectrometers Scan mode Methyl propionate

Strategy: ab initio / two internal rotation codes / experimental data 1) ab initio calculation (MP2) or quantum chemical calculation (DFT)  A, B, C for all conformers 2) use the scan spectrum to assign transitions for the A species 3) guess values for V 3, I  and use XIAM to predict the E species 4) use the high resolution spectrum to assign E species 5) fit the A-E data with XIAM and BELGI 6) compare with ab initio values the structural parameters (A,B,C, angles of the methyl group) XIAM BELGI

the conformers & nomenclature 9 the geometries of isoamyl acetate lilian w. sutikdja, 3 x 3 x 3 = 27 cis-conformers Cis trans conformers: high torsional barrier of about 40 kJ/mol around θ ii 1 Cs – Symmetry + 26 C1-Symmetry

quantum chemical calculation 10 on MP2/ G** level of theory lilian w. sutikdja, 23 rd February 2012 Experimental Value VS. Quantum Chemical Calculation Rotational Constants A, B, and C Angles between the internal rotation axis and the inertial axes a, b, and c axes

isoamyl acetate 12 spectral analysis & results ConstantUnitXIAMBELGI-C 1 (PAM)MP2/ G** AGHz (12) (33)3.307 BGHz (18) (30)0.725 CGHz (22) (81)0.702 JJ kHz (67)  JK kHz0.2849(42) KK kHz3.986(21) JJ kHz (53)  JK kHz-3.91(12) D pi2j kHz61.55(16) D pi2- kHz32.68(47) F0F0 GHz (21) (32) II uÅ (47) (72)3.197 V3V3 GHz (39) (28) cm (14) (93) kJ/mol (16) (12) ∡ (i,a) degrees (8) (17) ∡ (i,b) degrees (54) (71) ∡ (i,c) degrees96.912(18) (28) RmskHz Reduced barrier % 1.8% 1.7%

Methyl proprionate: a two-top inequivalent methyl rotor

Two-step diagonalization for the two-top problem H RAM = H tor + H rot + H c.d + H int 1) Diagonalization of the torsional part of the Hamiltonian : Eigenvalues = torsional energies 2) A low set of torsional Eigenvectors x rotational wavefunctions are then used to set up the matrix of the rest of the Hamiltonian: H rot = AJ a 2 + B R J b 2 +C R J c 2 + q 1 J a p 1 + q 2 J a p 2 + r 1 J b p 1 + r 2 J b p 2 H c.d usual centrifugal distorsion terms H int higher order torsional-rotational interactions terms : cos3    cos3  2, p 1, p  and global rotational operators like J a, J b, J c

Operator a Parameter b Value c / cm -1 Jz2Jz2 A (48) Jx2Jx2 B (17) Jy2Jy2 C (15) −J 4 ΔJΔJ 6.180(21)∙10 -9 −J 2 J z 2 Δ JK 30.17(16)∙10 -9 −J z 4 ΔKΔK 167.2(13)∙10 -9 −2J 2 (J x 2 −J y 2 ) JJ (50)∙10 -9 p12p12 F1F d p22p22 F2F d p 1 p 2 F 12 −0.50 d (1/2)(1−cos3α 1 )V 3, (25) (1/2)(1−cos3α 2 )V 3, (15) (1/2)(1−cos3α 2 )J 2 V 3,2J − (90) J z p 1 q1q d J z p 2 q2q (92) J x p 1 r1r1 − d J x p 2 r2r2 − (56) Methyl propionate, Parameters determined by the BELGI-2tops code rotation Cent. Dist. Potential barriers Internal rotation constants Related to   and   Interaction between the 2 tops

Conclusions Combining ab initio, microwave spectroscopy in a MB and effective hamiltonian methods to study rather large esters led to rather consistent results, apart sometimes for the moment of inertia of the top (non- rigidity effects from the rest of the molecule). - How can we study the excited torsional states now ? - Are any of those studies of any relevance for the understanding of the odor-molecular structure relationship?

From microwave spectroscopy to perfum analysis ? (2S,5S)-Cassyrane (2S,5R)-Cassyrane important blackcurrant odorants for perfumery, the two cassyrane stereoisomers were studied by high resolution microwave spectroscopy (2S,5S)- Most fruity (2S,5R)- H. Mouhib, W. Stahl, M. Lüthy, M. Büchel, P. Kraft, Angew. Chem. Int. Ed. 2011, 50, 5576

For structural correlations: gas-phase structure of the most fruity (2S,5S)-Cassyrane superposed with the (+) ‑ (2S,4R)-Oxane (“Cassis base 345B”) For the superposition: Cassyrane fixed (black) (+) ‑ (2S,4R)-Oxane superimposed on the structure by rotation (in silver) No deformation of bond lengths and angles Methyl groups which have a direct effect on the olfactory properties of Cassyrane Oxane only overlay well if C-5 of Cassyrane is (S)-configured and the C-4 of Oxane is (R)-configured. 19 Cassyrane – Superposition Analysis – H. Mouhib, W. Stahl, M. Lüthy, M. Büchel, P. Kraft, Angew. Chem. Int. Ed. 2011, 50, 5576

Columbus 2009: A NEW PROGRAM FOR NON-EQUIVALENT TWO-TOP INTERNAL ROTORS WITH A C s FRAME N-methylacetamide: N. Ohashi, J. T. Hougen, R. D. Suenram, F. J. Lovas, Y. Kawashima, M. Fujitake, and J. Pyka, JMS 2004 V 3 (1)=73 cm -1 V 3 (2)=79 cm -1 ; Methyl Acetate : Williams et al, J. Trans. Faraday Soc 1970; Sheridan et al JMS 1980, Kelley And Blake, Ohio state 2006 : Astrophysical importance! V 3 (1)=100 cm-1 V 3 (2)=425 cm-1

Methyl Acetate: energy levels JK a K c 3 sets of internal rotation splittings : (AA,EA). V 3 = 100 cm -1  1 = a few GHz (AA,AE). V 3 = 425 cm -1  2 = a few MHz (AA,EE). Interaction between the 2 tops  a = 1.64 D,  b = 0.06 D 0 0 ±1 ± 1 0 ± 1 1 ±1  1  2 Permutation-inversion group G 18 Without torsion Top 1 Top 2 Interaction

The new code: BELGI-2tops a new two-C 3v -top program was written in 2009: 1. For low, medium or high barriers 2. With high accuracy (obs-calcs < 1 kHz) 3. With high computational speed Begin with Ohashi’s two-top program, but use: 1. Two-step diagonalization (Herbst, BELGI) 2. Banded matrix computational methods suggested in 2009 ?

Theoretical Model: the global approach for one top H RAM = H rot + H tor + H int + H c.d. RAM = Rho Axis Method (axis system) for a C s (plane) frame : get rid of J x p  Constants1 1-cos3  p2p2 JapJap 1-cos6  p4p4 Jap3Jap3 1V 3 /2F  V 6 /2k4k4 k3k3 J2J2 (B+C)/2*FvFv GvGv LvLv NvNv MvMv k 3J Ja2Ja2 A-(B+C)/2*k5k5 k2k2 k1k1 K2K2 K1K1 k 3K J b 2 - J c 2 (B-C)/2*c2c2 c1c1 c4c4 c 11 c3c3 c 12 JaJb+JbJaJaJb+JbJa D ab or E ab d ab  ab  ab d ab6  ab  ab Torsional operators and potential function V(  ) Rotational Operators Hougen, Kleiner, Godefroid JMS 1994  = angle of torsion,  = couples internal rotation and global rotation, ratio of the moment of inertia of the top and the moment of inertia of the whole molecule Kirtman et al 1962 Lees and Baker, 1968 Herbst et al 1986

PsPAM = Pseudo Principal Axis Method: Get rid of all J x J y, J y J z, and J z J x terms Constants 1 1-cos3   p  2 J a p  1-cos6   p  4 J a p  3 1.V 3 /2F  V 6 /2k4k4 k3k3 J 2.B bar FvFv GvGv LvLv NvNv MvMv k 3J J z 2. A-B bar k5k5 k2k2 k1k1 K2K2 K1K1 k 3K J b 2 - J c 2. (B-C)/2c2c2 c1c1 c4c4 c 11 c3c3 c 12 JaJb+JbJaJaJb+JbJa D ab d ab  ab  ab d ab6  ab  ab Torsional Operators = f(      p   p   Rotational Operators Kirtman et al. 1962; Lees and Baker 1968; Herbst et al Operator = (rotation)x(torsion)

Global approach for two tops : Ohashi’s model. H tor = F 1 p F 2 p F 12 p 1 p 2 + (1/2) V 31 (1-cos3  1 ) + (1/2) V 32 (1-cos3  2 ) +V 12c (1-cos3  1 ) ( 1-cos3  2 ) +V 12s sin3  1 sin3  2 H rot = AJ z 2 + BJ x 2 + CJ y 2 + cent.distorsion H int = r 1 J x p 1 + r 2 J x p 2 + q 1 J z p 1 + q 2 J z p 2 +B 1 p 1 2 J x 2 + B 2 p 2 2 J x 2 +B 12 p 1 p 2 J x 2 + C 1 p 1 2 J y 2 + C 2 p 2 2 J y 2 + C 12 p 1 p 2 J y 2 +q 12p p 1 p 2 (p 1 +p 2 ) J z +q 12m p 1 p 2 (p 1 -p 2 ) J z +...

Overview of Existing Two-Top Programs Name Authors What it does? Method programs for rotational spectroscopy (Z. Kisiel) _____________________________________________________________________ XIAM Hartwig up to 3 sym tops « IAM » Potential Function fit Maederup to one quad Often 1MHz Obs-Calcs nucleusAr-acetone, (CH 3 ) 2 SiF 2 _____________________________________________________________________ ERHAM Gronerone or two Effective v t states fit internal rotors Fourier series for Torsional of sym. C 3v or C 2v Tunneling Splittings J up to 120. High Barrier acetone, diMEether _____________________________________________________________________ SPFIT/ Pickettone or two internalPotential Function fit SPCATrotors, sym or asym.propane _____________________________________________________________________ OHASHI Ohashitwo C 3v internal rotorsPotential Function fit Hougen C s or C 2h Frame A and E species fit together 1 kHz accuracy, but very slow N-methylacetamide, biacetyl

Overview of Existing Two-Top Programs(suite) Nameauthors what it does? Method ______________________________________________________________________ JB95Plusquellic one internal rotorPAM but can be used for 2 tops in top-top interaction is smallalanine dipeptide, peptide mimetics... graphical interface

the conformers & nomenclature 29 the geometries of isoamyl acetate lilian w. sutikdja, 23 rd February x 3 x 3 = 27 cis-conformers  iii ≈ 180°  iv ≈ 180°  v ≈ 60°, -60° 11 a a 3 -( 16 P 8, 20 M 8 ) aa(P, M)

the conformers & nomenclature conformers of isoamyl acetate lilian w. sutikdja, 23 rd February cis-conformers 1 C s – Symmetry + 26 C 1 -Symmetry 1 C s – Symmetry + 26 C 1 -Symmetry calculation on MP2/ G** level