Presentation is loading. Please wait.

Presentation is loading. Please wait.

How methyl tops talk with each other

Similar presentations


Presentation on theme: "How methyl tops talk with each other"— Presentation transcript:

1 How methyl tops talk with each other
Melanie Schnell Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, D Berlin, Germany Jens-Uwe Grabow Gottfried-Wilhelm-Leibniz-Universität Institut für Physikalische Chemie & Elektrochemie Callinstrasse 3A, D Hannover, Germany

2 Motivation - learn more about the internal rotation behavior in C3v-symmetric molecules with three C3v-symmetric tops - studied so far: (CH3)3SiCl, (CH3)3GeCl, (CH3)3SnCl, (CH3)3SiI, (CH3)3GeCCH … - large influence of the central atom on the chemical bond character and thus on the torsional behavior: top-top communication - enlarge the series to gain more information

3 (CH3)3GeBr ! … unusual K=0 quadrupole patterns
- observed for (CH3)3SnCl, but not for (CH3)3SiCl and (CH3)3GeCl. - hypothesis: low torsional barrier and thus large splitting strong rotorsional interaction K=±1 mixing Idea probe this effect using another molecule with different quadrupole coupling and barrier to internal rotation: ! (CH3)3GeBr - intermediate torsional coupling - large quadrupole coupling

4 + =   K=0 K=1 K=0 F+1F 7/2  5/2 9/2  7/2 11/2  9/2 13/2  11/2
9/27/2 11/2  9/2 7/2  5/2 13/2  11/2 K=1 MHz MHz 7/2  5/2 9/2  7/2 11/2  9/2 13/2  11/2 F+1F K=0

5 Motivation decrease in steric hinderance increase in ionic contribution A recent studya of the series (CH3)3XCl, X = Si, Ge, Sn revealed the major influence of the central atom. covalent radii / Å smallest r(H---H) between 2 CH3 groups / Å torsional barrier (exp.) / kJ/mol tors. Splitting (J: 21, K=0) / MHz eQq(35Cl) /MHz X-C bond character / % (Townes-Dailey model) Quadrupole Moment / 1024 cm2 X = Si Ge Sn 6.91b 4.45a 1.77a 0.030b 1.8a 200a -34.8b -40.1a -35.8a ionic 35Cl: Br: 0.33 a Schnell et al., Angewandte Chemie Int. Ed. 45, (2006). b Merke et al., J. Mol. Spectr. 216, (2002).

6 COBRA-FT microwave spectroscopy
The apparatus COBRA-FT microwave spectroscopy excitation 1μs Random rotation of the molecules before excitation: Dipole moments cancel MW pulse detection T = 100μs Coherence after excitation: Oscillating macroscopic dipole moment MW signal

7 The torsion-rotation spectrum of (CH3)3GeBr
(J+1 J = 7 6-transition) Br-NQ-HFS torsional pattern 81Br 79Br

8 The torsion-rotation spectrum of (CH3)3GeBr

9 The torsional pattern of (CH3)3GeBr
(J+1 J = 4 3-transition) 2 closely lying hyperfine components

10 Multidimensional high-barrier tunneling formalism
(MS-group G162) 27 different possibilities of orienting the CH3-groups with respect to each other (33) 27 frameworks 5 topologically inequivalent tunneling pathways: HR: rotation of 1 single CH3-group HA: anti-geared rotation of 2 CH3-groups HG: geared rotation of 2 CH3-groups HL: rotation of 3 CH3-groups with the same sense HE: rotation of 3 CH3-groups with different sense

11 C3-overall molecular rotation
MS-group G162  = (1, 2, 3),  = (4, 5, 6),  = (7, 8, 9); D = (a, b, c)(1, 4, 7)(2, 5, 8)(3, 6, 9); R = (b, c)(2, 3)(4, 7)(5, 9)(6, 8)* torsions C3-overall molecular rotation Permution-Inversion  reflection K. D. Möller, H. G. Andresen, J. Chem. Phys. 39, 17 (1963).

12 Tunneling Hamiltonian matrix for K=0

13 G162 Eigenvalues W1(A1) = H11 +6HR+6HE+2HL+6HA+6HG
W2(E2) = H HR-3HE+2HL-3HA+6HG W3(I1) = H HE-HL-3HA W4(I2) = H HR-3HE-HL W5(I3) = H HR-HL+3HA W6(I4) = H HL-3HG rigid rotor energy level tunneling shifts lam energy levels torsional symmetry species tors

14 Torsional species in G162 tors K=0 K=1,2 K=3 Jeven Jodd
A1 A1 A2 E1 A1+A2 I I2 I2 2I2 2I2 I I1 I1 2I1 2I1 I I4 I5 I4+I5 I4+I5 I I3 I3 2I3 2I3 E2 E2 E2 E3+E4 2E2

15 The predicted torsional splitting pattern
60th International Symposium on Molecular Spectroscopy, Columbus (OH) No unusual K=0 quadrupole splitting observed!

16 Spectroscopic results
(CH3)374Ge79Bra (CH3)374Ge35Clb A / MHz (14) (21) B / MHz (47) (92) DJ / kHz (48) (14) eQq / MHz (58) (16) V3 / cm (12) (47) F0 / GHz * * / ° * * N / kHz r(X-Cl) / Å (21) (97) * fixed a M. Schnell, J.-U. Grabow, Chem. Phys. (2007) accepted. b M. Schnell, J.-U. Grabow, PCCP 8, (2006).

17 Character of the chemical bonds
(CH3)374Ge79Bra (CH3)374Ge35Clb Ge-X  covalent % %  double % % ionic % % Ge-C  covalent % 81 % ionic % 19 % backbonding of the Br towards the Ge exceeds polarization of the -bond: positive charge results on the coupling halogen -backbonding is not possible a M. Schnell, J.-U. Grabow, Chem. Phys. (2007) accepted. b M. Schnell, J.-U. Grabow, PCCP 8, (2006).

18 increased ionic character
Conclusions torsion-rotation spectrum recorded from GHz similar torsional splitting pattern as (CH3)3GeCl barrier heights: 334 cm-1 (Br) vs. 372 cm-1 (Cl) r(Ge-Br) = Å compared to r(Ge-Cl) = Å Br NQ-hyperfine structure dominates the spectrum eQq: MHz(Br) vs MHz(Cl) no unusual additional quadrupole splitting observed like (CH3)3GeCl but unlike (CH3)3SnCl Bromine compound: increased ionic character lower barrier

19 Thanks! Wolfgang Rogge, electronic shop PCI, GWLU Hannover
Mechanical shop PCI, GWLU Hannover Fonds der Chemischen Industrie Deutsche Forschungsgemeinschaft Land Niedersachsen


Download ppt "How methyl tops talk with each other"

Similar presentations


Ads by Google